Recurrent Nets for Sequence Data
Why Recurrent Structure

- Solve problems of sequence data: speeches, languages
- Captures sequence dependencies
Recurrent Structure: Folded and Unrolled View

Folded View

Unrolled View

outputs

states

inputs

Y_t

s_t

x_t

Y_1

s_1

x_1

Y_2

s_2

x_2

Y_3

s_3

x_3
Simple Recurrent Net

transition

\[s_t = \sigma(W_1 s_{t-1} + W_2 x_t) \]

emission

\[y_t = \sigma(W_3 s_t) \]

Hard to capture long term dependency, exponential multiplication effect
LSTM: Update with Moving Average

\[s_t = \alpha_t s_{t-1} + \beta_t \tanh(W[x_t, s_{t-1}]) \]

How to set the forget rate and remembering rate?

Use another neural net module
One variant of LSTM

\[s_t = \alpha_t s_{t-1} + \beta_t \tanh(W[x_t, s_{t-1}]) \]
\[\alpha_t = \sigma(W_f[x_t, s_{t-1}]) \]
\[\beta_t = \sigma(W_r[x_t, s_{t-1}]) \]

Many other variants exist with similar spirit.
Unrolled Stacked Recurrent Nets

- Provide Hierarchical representation about sequence
- Feed output of one sequence to another RNN

![Diagram of Unrolled Stacked Recurrent Nets]
LSTM as Compositional Building Block

Sequence Encoder
sequence to vector

Sequence Decoder
vector to sequence
Seq2Seq: Machine Translation Model

source sequence

target sequence
Image2Seq: Image Caption Model

Image

ConvNet

Decoder

dog

catch

ball
It is all about Composability!
Topics not Covered Today

● More complicated memory structures
 ○ Memory networks

● Objective derivation for generative models
 ○ Generative adversarial nets
 ○ Variational methods

● Gradient estimation with hard decision and interactions
 ○ Q learning, Policy gradient