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Lecturers



ML Applications need more than algorithms

Learning Systems: this course



What’s this course

● Not about Learning aspect of Deep Learning (except for the first two)

● System aspect of deep learning: faster training, efficient serving, lower 
memory consumption.



Logistics

● Location/Date: Tue/Thu 11:30 am - 12:50pm MUE 153

● Join slack: https://uw-cse.slack.com dlsys channel

● We may use other time and locations for invited speakers.

● Compute Resources: AWS Education, instruction sent via email.

● Office hour by appointment

https://uw-cse.slack.com


Homeworks and Projects

● Two code assignments

● Group project
○ Two to three person team
○ Poster presentation and write-up



A Crash Course on Deep Learning



Elements of Machine Learning

Model

Objective

Training



What’s Special About Deep Learning
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End to End Training
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Ingredients in Deep Learning

● Model and architecture

● Objective function, training techniques 
○ Which feedback should we use to guide the algorithm?
○ Supervised, RL, adversarial training.

● Regularization, initialization (coupled with modeling)
○ Dropout, Xavier

● Get enough amount of data



Major Architectures

Image Modeling
Convolutional Nets

Language/Speech
Recurrent Nets



Image Modeling and Convolutional Nets



Breakthrough of Image Classification



Evolution of ConvNets
• LeNet (LeCun, 1998)

– Basic structures:  convolution,  max-pooling, softmax
• Alexnet (Krizhevsky et.al 2012)

– ReLU, Dropout
• GoogLeNet (Szegedy et.al.  2014)

– Multi-independent pass way (Sparse weight matrix)
• Inception BN (Ioffe et.al 2015)

– Batch normalization
• Residual net (He et.al 2015)

– Residual pass way



Fully Connected Layer

Output

Input



Convolution = Spatial Locality + Sharing

Spatial Locality

Without Sharing

With Sharing



Convolution with Multiple Channels

Source: http://cs231n.github.io/convolutional-networks/



Pooling Layer

Source: http://cs231n.github.io/convolutional-networks/

Can be replaced by strided convolution



LeNet (LeCun 1998)

• Convolution
• Pooling
• Flatten
• Fully connected
• Softmax output 



AlexNet (Krizhevsky et.al 2012)



Challenges: From LeNet to AlexNet

● Need much more data: ImageNet
● A lot more computation burdens: GPU

● Overfitting prevention
○ Dropout regularization

● Stable initialization and training
○ Explosive/vanishing gradient problems
○ Requires careful tuning of initialization and data normalization



ReLU Unit

• ReLU

• Why ReLU?
– Cheap to compute
– It is roughly linear..



Dropout Regularization

Dropout Mask

● Randomly zero out neurons with 
probability 0.5

● During prediction,  use expectation 
value (keep all neurons but scale 
output by 0.5)



Dropout Regularization

Dropout Mask

● Randomly zero out neurons with 
probability 0.5

● During prediction,  use expectation 
value (keep all neurons but scale 
output by 0.5)



GoogleNet: Multiple Pathways, Less Parameters



Vanishing and Explosive Value Problem

 

● Imagine each layer multiplies 
Its input by same weight matrix

○ W > 1: exponential explosion
○ W < 1: exponential vanishing

● In ConvNets, the weight are not tied, but 
their magnitude matters 

○ Deep nets training was initialization sensitive



Batch Normalization: Stabilize the Magnitude

• Subtract mean
• Divide by standard deviation
• Output is invariant to input scale!

– Scale input by a constant
– Output of BN remains the same

• Impact
– Easy to tune learning rate
– Less sensitive initialization

(Ioffe et.al 2015)



The Scale Normalization (Assumes zero mean)

Scale
Normalization 

Invariance to 
Magnitude!



Residual Net (He et.al 2015)

● Instead of doing transformation
add transformation result to input

● Partly solve vanishing/explosive
value problem 



Evolution of ConvNets
• LeNet (LeCun, 1998)

– Basic structures:  convolution,  max-pooling, softmax
• Alexnet (Krizhevsky et.al 2012)

– ReLU, Dropout
• GoogLeNet (Szegedy et.al.  2014)

– Multi-independent pass way (Sparse weight matrix)
• Inception BN (Ioffe et.al 2015)

– Batch normalization
• Residual net (He et.al 2015)

– Residual pass way



More Resources

● Deep learning book (Goodfellow et. al)

● Stanford CS231n: Convolutional Neural Networks for Visual Recognition

● http://dlsys.cs.washington.edu/materials



Lab1 on Thursday

● Walk through how to implement a simple model for digit recognition 
using MXNet Gluon

● Focus is on data I/O, model definition and typical training loop
● Familiarize with typical framework APIs for vision tasks

● Before class: sign up for AWS educate credits 
● https://aws.amazon.com/education/awseducate/apply/
● Create AWS Educate Starter Account to avoid getting charged
● Will email out instructions, but very simple to DIY, so do it today!

https://aws.amazon.com/education/awseducate/apply/

