People

Lecturers

Teaching Assistant
What’s this course

- **Not** about Learning aspect of Deep Learning (except for the first two)
- System aspect of deep learning: faster training, efficient serving, lower memory consumption.
- Doing something that we have never done before.
Logistics

- Location/Date: Tue/Thu 1pm - 2:20pm MGH 254
- Join slack: https://uw-cse.slack.com dlsys channel

- May 3rd, 5th (Wed, Friday): Joint session with CSE 548
 - Computer Architectures for Deep Learning

- We may use other locations for invited speakers.

- Compute Resources: AWS Education, instruction sent via email.

- Office hour by appointment
Homeworks and Projects

- Two code assignments

- Group project
 - Two to three person team
 - Poster presentation and write-up
A Crash Course on Deep Learning
Elements of Machine Learning

Model

\[x_i = \begin{bmatrix} \text{feature}_0 \\ \text{feature}_1 \\ \cdots \\ \text{feature}_m \end{bmatrix} \]

\[\hat{y}_i = \frac{1}{1 + \exp(-w^T x_i)} \]

Objective

\[L(w) = \sum_{i=1}^{n} l(y_i, \hat{y}_i) + \lambda \| w \|^2 \]

Training

\[w \leftarrow w - \eta \nabla_w L(w) \]
What’s Special About Deep Learning

Compositional Model

End to End Training

\[\hat{y}_i = \frac{1}{1 + \exp \left(-w^T x_i \right)} \]
Ingredients in Deep Learning

- Model and architecture
- Objective function, training techniques
 - Which feedback should we use to guide the algorithm?
 - Supervised, RL, adversarial training.
- Regularization, initialization (coupled with modeling)
 - Dropout, Xavier
- Get enough amount of data
Major Architectures

Image Modeling Convolutional Nets

Language/Speech Recurrent Nets
Image Modeling and Convolutional Nets

Layer 1 Layer 2 Output

explore spatial information with convolution layers
Breakthrough of Image Classification
Evolution of ConvNets

- LeNet (LeCun, 1998)
 - Basic structures: convolution, max-pooling, softmax
- Alexnet (Krizhevsky et.al 2012)
 - ReLU, Dropout
- GoogLeNet (Szegedy et.al. 2014)
 - Multi-independent pass way (Sparse weight matrix)
- Inception BN (Ioffe et.al 2015)
 - Batch normalization
- Residual net (He et.al 2015)
 - Residual pass way
Fully Connected Layer

\[h_i = \sum_{j=1}^{5} W_{ij} x_i \]

\[h_1 = W_{11} x_1 + W_{21} x_2 + W_{31} x_3 + W_{41} x_4 + W_{51} x_5 \]
Convolution = Spatial Locality + Sharing

Spatial Locality

Without Sharing

\[h_i = W_{1,i} x_{i-1} + W_{2,i} x_i + W_{3,i} x_{i+1} \]

With Sharing

\[h_i = W_{1} x_{i-1} + W_{2} x_i + W_{3} x_{i+1} \]
Convolution with Multiple Channels

Source: http://cs231n.github.io/convolutional-networks/
Pooling Layer

Can be replaced by strided convolution

Source: http://cs231n.github.io/convolutional-networks/
LeNet (LeCun 1998)

- Convolution
- Pooling
- Flatten
- Fully connected
- Softmax output

\[p(i) = \frac{e^{f(i) / T}}{\sum_j e^{f(j) / T}} \]
AlexNet (Krizhevsky et.al 2012)
Challenges: From LeNet to AlexNet

- Need much more data: ImageNet
- A lot more computation burdens: GPU

- Overfitting prevention
 - Dropout regularization

- Stable initialization and training
 - Explosive/vanishing gradient problems
 - Requires careful tuning of initialization and data normalization
ReLU Unit

- ReLU \(y = \max(x, 0) \)

- Why ReLU?
 - Cheap to compute
 - It is roughly linear.
Dropout Regularization

- Randomly zero out neurons with probability 0.5
- During prediction, use expectation value (keep all neurons but scale output by 0.5)
Dropout Regularization

- Randomly zero out neurons with probability 0.5
- During prediction, use expectation value (keep all neurons but scale output by 0.5)
GoogleNet: Multiple Pathways, Less Parameters

Figure 2: Inception module
Vanishing and Explosive Value Problem

- Imagine each layer multiplies its input by the same weight matrix:
 - $W > 1$: exponential explosion
 - $W < 1$: exponential vanishing

- In ConvNets, the weight are not tied, but their magnitude matters:
 - Deep nets training was initialization sensitive
Batch Normalization: Stabilize the Magnitude

- Subtract mean
- Divide by standard deviation
- Output is invariant to input scale!
 - Scale input by a constant
 - Output of BN remains the same

- Impact
 - Easy to tune learning rate
 - Less sensitive initialization

Algorithm 1: Batch Normalizing Transform, applied to activation x over a mini-batch.

(loffe et.al 2015)
The Scale Normalization (Assumes zero mean)

Scale Normalization

\[BN(x)_i = \frac{x_i}{\sqrt{\sum_{j=1}^{m} x_j^2}} \]

Invariance to Magnitude!

\[BN(\alpha x)_i = \frac{\alpha x_i}{\sqrt{\sum_{j=1}^{m} (\alpha x_j)^2}} = BN(x)_i \]
Residual Net (He et.al 2015)

- Instead of doing transformation, add transformation result to input
- Partly solve vanishing/explosive value problem
Evolution of ConvNets

• LeNet (LeCun, 1998)
 – Basic structures: convolution, max-pooling, softmax
• Alexnet (Krizhevsky et.al 2012)
 – ReLU, Dropout
• GoogLeNet (Szegedy et.al. 2014)
 – Multi-independent pass way (Sparse weight matrix)
• Inception BN (Ioffe et.al 2015)
 – Batch normalization
• Residual net (He et.al 2015)
 – Residual pass way
More Resources

● Deep learning book (Goodfellow et. al)

● Stanford CS231n: Convolutional Neural Networks for Visual Recognition

● Recurrent nets: to be continued next lecture.