
Lecture 11: Distributed Training and
Communication Protocols

CSE599W: Spring 2018

Where are we

Gradient Calculation (Differentiation API)

Computational Graph Optimization and Execution

Runtime Parallel Scheduling

GPU Kernels, Optimizing Device Code

Programming API

Accelerators and Hardwares

User API

System
Components

Architecture

High level Packages

Where are we

Gradient Calculation (Differentiation API)

Computational Graph Optimization and Execution

Runtime Parallel Scheduling / Networks

Programming API

GPU Kernels, Optimizing Device Code

Accelerators and Hardwares

Recap: Parallel Scheduling Engine

Execution Function (box)

A.data

B.data

v2

v1

lambda: B.data=A.data+1

The Tagged Data Pack Reference to Related
Things into Execution
Function (via Closure)

engine.push(Exec Function ,
read = [],

mutate= [])

Push the Operation
to Engine

v1

A.data B.data

v2

Recap: Example Scheduling

engine.push(lambda: A.data=2,
 read=[], mutate= [A.var])

engine.push(lambda: B.data=A.data+1,
 read=[A.var], mutate= [B.var])

engine.push(lambda: D.data=A.data * B.data,
 read=[A.var, B.var], mutate=[D.var])

A = 2

B = A + 1

D = A * B

Data Parallelism

● Train replicated version of model
in each machine

● Synchronize the gradient

How to do Synchronization over Network

fullc-forward

fullc-forward

fullc-backward

fullc-backward

softmax-forward softmax-backward

log-loss

w1

w2 g2

g1

data

label

sync g1
update w1

fullc-forward

fullc-forward

softmax-forward

log-loss

w1

w2

data

label

sync g2
update w2

This Lecture

Distributed Gradient Aggregation, Local Update

fullc-forward

fullc-forward

fullc-backward

fullc-backward

softmax-forward softmax-backward

log-loss

w1

w2 g2

g1

data

label

Network protocolg1

Many replicas of the same graph
run in parallel

G1 = sum(g1 over replicas)

w1 -= lr * G1

Allreduce: Collective Reduction

result = allreduce(float buffer[size])Interface

a = [1, 2, 3]

b = comm.allreduce(a, op=sum)

a = [1, 0, 1]

Machine 1 Machine 2

b = comm.allreduce(a, op=sum)

Running Example

assert b == [2, 2, 4] assert b == [2, 2, 4]

comm = communicator.create() comm = communicator.create()

Use Allreduce for Data Parallel Training

grad = gradient(net, w)

for epoch, data in enumerate(dataset):
 g = net.run(grad, in=data)
 gsum = comm.allreduce(g, op=sum)

 w -= lr * gsum / num_workers

Common Connection Topologies

All-to-all:
(plugged to same switch)

Ring (NVLink) Tree-Shape

Discussion: 3min

● How to Implement Allreduce over Network

● What is impact of network topology on this

Tree Shape Reduction

2

 3 1

1

2

● Logically form a reduction tree
between nodes

● Aggregate to root then broadcast

Tree Shape Reduction

2

 3 1

1

2

3 1

2

Tree Shape Reduction

2

 3 1

1

2

3 1

26

Tree Shape Reduction

2

 3 1

1

2

99

9 9

Question: What is Time
Complexity of Tree Shape
Reduction

Ring based Reduction

● Form a logical ring between nodes

● Streaming aggregation

Ring based Reduction

Ring based Reduction

Ring based Reduction

Ring based Reduction

Ring based Reduction

Each node have correctly reduced result of one segment!
This is called reduce_scatter

Ring based Reduction: Allgather phase

Ring based Reduction: Allgather phase

Ring based Reduction: Allgather phase

Ring based Reduction: Allgather phase

Question: What is Time
Complexity of Ring based
Reduction

Allreduce Libraries

● MPI offers efficient CPU allreduce
● dmlc/rabit: fault tolerant variant
● facebookincubator/gloo
● Parameter Hub: from UW

● NCCL: Nvidia’ efficient multiGPU collective

GPUDirect and RMDA

From Nvidia

NCCL: Nvidia’s Efficient Multi-GPU Collective

● Uses unified GPU direct memory accessing

● Each GPU launch a working kernel, cooperate with each other to do ring
based reduction

● A single C++ kernel implements intra GPU synchronization and Reduction

Discussion: 4min

● What are advantages and limitations of Allreduce

● How to integrate allreduce with dependency scheduler?

Schedule Allreduce Asynchronously

Make use of mutation semantics!

engine.push(
 lambda: A.data=2,
 read=[], mutate= [A.var])

engine.push(
 lambda: B.data=allreduce(A.data),
 read=[A.var], mutate=[B.var, comm.var])

engine.push(
 lambda: D.data=A.data * B.data,
 read=[A.var, B.var], mutate=[D.var])

A = 2

B = comm.allreduce(A)

D = A * B

Distributed Gradient Aggregation, Remote Update

fullc-forward

fullc-forward

fullc-backward

fullc-backward

softmax-forward softmax-backward

log-loss

w1

w2 g2

g1

data

label

g1

Many replicas of the same graph
run in parallel

w1 -= lr * sum(g1 over replicas)

Parameter Server

w1

Update result on remote server and
send updated results back

Parameter Server Abstraction

ps.push(index, gradient)

Interface

ps.pull(index)

PS Interface for Data Parallel Training

grad = gradient(net, w)

for epoch, data in enumerate(dataset):
 g = net.run(grad, in=data)

 ps.push(weight_index, g)
 w = ps.pull(weight_index)

PS Data Consistency: BSP

pull weight

push gradient

update weight

● “Synchronized”

○ Gradient aggregated over all works

○ All workers receives the same
parameters

○ Give same result as single batch update

○ Brings challenges to synchronization

PS Consistency: Asynchronous

The Cost of PS Model: All to All Pattern

● Each worker talks to all servers

● Shard the parameters over different servers

● What is the time complexity of communication?

Integrate Schedule with Networking using Events

A.data lambda cb: ps.receive(A.data)

Receive Function Engine

def event.on_data_received():
 #notify engine receive complete
 cb();

Asynchronous function that takes a
callback from engine

Use the callback to notify engine
that data receive is finished

Model Parallel Training

● Map parts of workload to different
devices

● Require special dependency patterns
(wave style)
○ e.g. LSTM

Question: How to Write Model Parallel Program?

for i in range(num_layers):
 for t in range(num_time_stamp):
 out, state = layer[i].forward(data[i][t], state)
 data[i+1][t] = out.copyto(device[i])

Scheduler tracks these dependencies

Discussion: What’s Special about Communication

Requirements
● Track dependency correctly
● Resolve resource contention and allocation
● Some special requirement on channel

○ Allreduce: ordered call

Most of them are simplified by a scheduler

