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Where are we

Gradient Calculation (Differentiation API)

Computational Graph Optimization and Execution

Runtime Parallel Scheduling

GPU Kernels, Optimizing Device Code

Programming API

Accelerators and Hardwares

User API

System 
Components

Architecture

High level Packages



Where are we

Gradient Calculation (Differentiation API)

Computational Graph Optimization and Execution

Runtime Parallel Scheduling / Networks

Programming API

GPU Kernels, Optimizing Device Code

Accelerators and Hardwares



Recap: Parallel Scheduling Engine

Execution Function (box)

A.data

B.data

v2

v1

lambda: B.data=A.data+1

The Tagged Data Pack Reference to Related 
Things into Execution 
Function (via Closure)

engine.push(                   Exec Function ,                   
read = [ ],

mutate= [ ])

Push the Operation 
to Engine

v1

A.data B.data

v2



Recap: Example Scheduling

engine.push(lambda: A.data=2, 
             read=[], mutate= [A.var])

engine.push(lambda: B.data=A.data+1, 
            read=[A.var], mutate= [B.var])

engine.push(lambda: D.data=A.data * B.data, 
            read=[A.var, B.var], mutate=[D.var])

A = 2

B = A + 1

D = A * B



Data Parallelism

● Train replicated version of model 
in each machine

● Synchronize the gradient



How to do Synchronization over Network

fullc-forward

fullc-forward

fullc-backward

fullc-backward

softmax-forward softmax-backward

log-loss

w1

w2 g2

g1

data

label

sync g1 
update w1
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This Lecture



Distributed Gradient Aggregation, Local Update

fullc-forward

fullc-forward

fullc-backward

fullc-backward

softmax-forward softmax-backward

log-loss

w1

w2 g2

g1

data

label

Network protocolg1

Many replicas of the same graph 
run in parallel

G1 = sum(g1 over replicas)

w1 -= lr * G1



Allreduce: Collective Reduction

result = allreduce(float buffer[size])Interface

a = [1, 2, 3]    

b = comm.allreduce(a, op=sum)

a = [1, 0, 1]    

Machine 1 Machine 2

b = comm.allreduce(a, op=sum)

Running Example

assert b == [2, 2, 4] assert b == [2, 2, 4]

comm = communicator.create() comm = communicator.create()



Use Allreduce for Data Parallel Training

grad = gradient(net, w)

for epoch, data in enumerate(dataset):
  g = net.run(grad, in=data)
  gsum = comm.allreduce(g, op=sum)

  w -= lr * gsum / num_workers 



Common Connection Topologies

All-to-all: 
(plugged to same switch)

Ring (NVLink) Tree-Shape



Discussion: 3min

● How to Implement Allreduce over Network

● What is impact of network topology on this



Tree Shape Reduction
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● Logically form a reduction tree 
between nodes

● Aggregate to root then broadcast



Tree Shape Reduction
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Tree Shape Reduction
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Tree Shape Reduction
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99

9 9

Question: What is Time 
Complexity of Tree Shape 
Reduction



Ring based Reduction

 

● Form a logical ring between nodes

● Streaming aggregation



Ring based Reduction

 



Ring based Reduction

 



Ring based Reduction

 



Ring based Reduction

 



Ring based Reduction

 

Each node have correctly reduced result of one segment!
This is called reduce_scatter



Ring based Reduction: Allgather phase

 



Ring based Reduction: Allgather phase

 



Ring based Reduction: Allgather phase

 



Ring based Reduction: Allgather phase

 

Question: What is Time 
Complexity of Ring based 
Reduction



Allreduce Libraries

● MPI offers efficient CPU allreduce
● dmlc/rabit: fault tolerant variant
● facebookincubator/gloo
● Parameter Hub: from UW

● NCCL: Nvidia’ efficient multiGPU collective



GPUDirect and RMDA

From Nvidia



NCCL: Nvidia’s Efficient Multi-GPU Collective

● Uses unified GPU direct memory accessing

● Each GPU launch a working kernel, cooperate with each other to do ring 
based reduction 

● A single C++ kernel implements intra GPU synchronization and Reduction



Discussion: 4min

● What are advantages and limitations of Allreduce

● How to integrate allreduce with dependency scheduler?



Schedule Allreduce Asynchronously

Make use of mutation semantics!

engine.push(
  lambda: A.data=2, 
  read=[], mutate= [A.var])

engine.push(
   lambda: B.data=allreduce(A.data), 
   read=[A.var], mutate=[B.var, comm.var])

engine.push(
   lambda: D.data=A.data * B.data, 
   read=[A.var, B.var], mutate=[D.var])

A = 2

B = comm.allreduce(A)

D = A * B



Distributed Gradient Aggregation, Remote Update

fullc-forward

fullc-forward

fullc-backward

fullc-backward

softmax-forward softmax-backward

log-loss

w1

w2 g2

g1

data

label

g1

Many replicas of the same graph 
run in parallel

w1 -= lr * sum(g1 over replicas)

Parameter Server

w1

Update result on remote server and 
send updated results back



Parameter Server Abstraction

ps.push(index, gradient)

Interface

ps.pull(index)



PS Interface for Data Parallel Training

grad = gradient(net, w)

for epoch, data in enumerate(dataset):
  g = net.run(grad, in=data)

  ps.push(weight_index, g)
  w = ps.pull(weight_index)



PS Data Consistency: BSP

pull weight

push gradient 

update weight 

● “Synchronized”

○ Gradient aggregated over all works

○ All workers receives the same 
parameters

○ Give same result as single batch update

○ Brings challenges to synchronization



PS Consistency: Asynchronous



The Cost of PS Model: All to All Pattern

● Each worker talks to all servers

● Shard the parameters over different servers

● What is the time complexity of communication?



Integrate Schedule with Networking using Events

A.data lambda cb: ps.receive(A.data)

Receive Function Engine

def event.on_data_received():
   #notify engine receive complete
   cb();

Asynchronous function that takes a 
callback from engine

Use the callback to notify engine
that data receive is finished



Model Parallel Training

● Map parts of workload to different 
devices

● Require special dependency patterns 
(wave style)
○ e.g. LSTM



Question: How to Write Model Parallel Program?

for i in range(num_layers):
  for t in range(num_time_stamp):
    out, state = layer[i].forward(data[i][t], state)
    data[i+1][t] = out.copyto(device[i])

Scheduler tracks these dependencies



Discussion: What’s Special about Communication

Requirements
● Track dependency correctly
● Resolve resource contention and allocation
● Some special requirement on channel

○ Allreduce: ordered call

Most of them are simplified by a scheduler


