Lecture 12: Model Serving
CSE599W: Spring 2018

(

S “That drink will get you to
: 2800 calories for today”

“I last saw your keys in the
store room”

“Remind Tom of the party”

“You're on page 263 of this
book”

Intelligent assistant

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Deep Learning Applications

d: 172330, dropped: 0, curre

Surveillance / Remote assistance

Neural networks model

We're excited for the

new new year future

Input keyboard

Model Serving Constraints

e latency constraint
o Batch size cannot be as large as possible when executing in the cloud
o Canonly run lightweight model in the device
e Resource constraint
o Battery limit for the device
o Memory limit for the device
o Cost limit for using cloud
e Accuracy constraint

o Some loss is acceptable by using approximate models
o Multi-level QoS

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Runtime Environment

Sensor | | Processor Radio >

streaming
Camera CPU Wifi CPU server
Touch screen GPU 4G/ LTE GPU server
Microphone FPGA Bluetooth TPU / FPGA server

ASIC

Resource usage for a continuous vision app

Qualcomm SD810 LTE Amazon EC2
Omnivision Tegra K1 GPU >800mW CPU cdlarge 2x400GFLOPS $0.1/h
90MmW = 34pJ/OP 15Mbps@700mW= 47nJ/b

Imager Processor Radio
Workload Deep learning 300GFLOPS @ 30GFLOPs/frame, 10fps
Budget Device power Cloud cost
30% of 10Wh for 10h = 300mW $10 person/year
Compute 9GFLOPS 3.5GFLOPS (GPU) / 8GFLOPS (CPU)
power

Huge gap between workload and budget .

Outline

e Model compression

e Serving System

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Model Compression

Tensor decomposition
Network pruning
Quantization

Smaller model

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Matrix decomposition

Fully-connected layer VN
e Memory reduction: (M +N)R

e Computation reduction: _ MY
(M + N)R

y 5w **

N J
Y

Merge into one matrix

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Tensor decomposition

Convolutional layer D2ST .ST/R4R,
e Memory reduction: SRs;+ D?R3Ry+ TR, bounded/bV
e Computation reduction: D2STH'W'

SRsHW + D?RsR,H'W' + TRyH'W'

* Kim, Yong-Deok, et al. "Compression of deep convolutional neural networks for fast and low power
PAUL G. ALLEN SCHOOL 8 P P p

mobile applications." ICLR (2016).
OF COMPUTER SCIENCE & ENGINEERING

Decompose the entire model

Conv | »‘ » FC 6 |* *

Conv la
= N v > 9

I«e-|

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

r-\;
o0

Fine-tuning after decomposition

VGG-16:34.06 — 78.68 ... — 89.40

QO
4
& GoogleNet: 56.98 — 87.74 ... — 88.66
g 22 —
O
& VGG-S:60.10 — 81.09 ... — 84.19
'
2 80
®)
|_
AlexNet:23.39 — 74.74 ... — 78.33
757
3 -4 3
n=10 n =10 n=10"

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Accuracy & Latency after Decomposition

Model Top-5 | Weights | FLOPs Titan X
AlexNet 80.03 61M 725M 117ms 245m) 0.54ms
AlexNet* 78.33 11M 272M 43ms 72ml) 0.30ms
(imp.) (-1.70) | (x5.46) | (x2.67) | (x2.72) | (x3.41) | (x1.81)
VGG-S 84.60 103M | 2640M 357ms 825ml 1.86ms
VGG-S* 84.05 14M 549M 97ms 193mJ | 0.92ms
(imp.) (-0.55) | (x7.40) | (x4.80) | (x3.68) | (x4.26) | (x2.01)
GoogLeNet 88.90 6.9M 1566M 273ms 473ml) 1.83ms
GoogLeNet* | 88.66 4.7TM 760M 192ms 296ml) 1.48ms
(imp.) (-0.24) | (x1.28) | (x2.06) | (x1.42) | (x1.60) | (x1.23)
VGG-16 89.90 138M | 15484M | 1926ms | 4757mJ | 10.67ms
VGG-16* 89.40 127M | 3139M 576ms | 1346mJ | 4.58ms
(imp.) (-0.50) | (x1.09) | (x4.93) | (x3.34) | (x3.53) | (x2.33)

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Network pruning: Deep compression

Quantization: less bits per weight

Pruning: less number of weights

Ve N l
/ \
' 4) | I
. 1 !
: Train Connectivity g I
original ;, \ J | Same :
network 1 <z . ! accuracy |
I
E> : Prune Connections : I
original | J ||+ ex-13x |
size | <z 'reduction
1 ™ : |
|
, Train Weights | :
I L J ,' 1
\

e)
Cluster the Weights
L O J
'8 T
Generate Code Book
. J

) T
Quantize the Weight
kwith Code Book

Z

7

Retrain Code Book

o —— -

~

< Huffman Encoding

I
I
|
same : Encode Weights P—
accuracy | - < accuracy

|

|

|

= =

[U p———

27x-31x | | Encode Index 1 35x-49x
reduction 5 :reduction

* Song Han, et al. "Deep Compression: Compressing Deep Neural Networks with Pruning, Trained

PAUL G ALLEN SCHOOL Quantization and Huffman Coding." ICLR (2016).

OF COMPUTER SCIENCE & ENGINEERING

Network pruning: prune the connections

Initialization: W) with W ~ N(0,%), iter = 0.
Hyper-parameter: threshold, §.
Output: W),

Train Connectivity before pruning after pruning
while not converged do

w® = w1 _ yly f(wt-1); z(t-1)),

t=t+1;)
end pruning
Prune Connections synapses
// initialize the mask by thresholding the weights.
Mask = 1(|W| > threshold);
W =W - Mask;
e —— Retrain Weights — .
while not converged do pruning
neurons

W — =1 _ .,](t)vf(nr(f—l):J.(f—l)):
W = w® . Mask;

t=1t+1;

end

Iterative Pruning -
threshold = threshold + d[iter + +];
goto Pruning Connections;

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Network pruning: weight sharing

cluster index fine-tuned 1 .
(2 bit uint) centroids centroids

Weight sharing by scalar quantization (top) and centroids fine-tuning (bottom).

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Use k-means clustering to
identify the shared weights
for each layer of a trained
network. Minimize
k
argminz Z lw — ¢;|?
C i=lwee
Finetune the neural network
using shared weights.

Network pruning: accuracy

Table 1: The compression pipeline can save 35X to 49 x parameter storage with no loss of accuracy.

Network Top-1 Error Top-5 Error | Parameters Egtr:press
LeNet-300-100 Ref 1.64% - 1070 KB
LeNet-300-100 Compressed | 1.58% - 27 KB 40x
LeNet-5 Ref 0.80% E 1720 KB

LeNet-5 Compressed 0.74% - 44 KB 39 x
AlexNet Ref 42.78% 19.73% 240 MB

AlexNet Compressed 42.78% 19.70% 6.9 MB 35 X
VGG-16 Ref 31.50% 11.32% 552 MB

VGG-16 Compressed 31.17% 10.91% 11.3MB 49 x

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Network pruning: accuracy vs compression

© Pruning + Quantization # Pruning Only Quantization Only < SVD

0.5%

0.0%
-0.5%
-1.0%) ———
-1.5%
-2.0%
-2.5% ¢
-3.0%
-3.5%
-4.0% f
-4.5%

Accuracy Loss

1 7
2% 5% 8% 1% 14% 17% 20%

Model Size Ratio after Compression

Figure 6: Accuracy v.s. compression rate under different compression methods. Pruning and
quantization works best when combined.

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Quantization: XNOR-Net

Network Variations Operations | Memory Computation | Accuracy on
used in Saving Saving ImageNet
Convolution | (Inference) | (Inference) (AlexNet)
Real-Value Inputs ‘ 1
Standard . : | Real-Value Weights
Convolution |g11.021 034~ | [oua 4 6k = 1x 1x %56.7
-0.250.61... 0.52° o 0687
| Real-Value Inputs
- : Binary Weights
Binary Weight | 5 11.0.21 - -0.34" T 1 Ty = ~32X ~2X %56.8
-0.250.61 ... 0.52 = z
Binary Inputs i
BinaryWeight : Binary Weights XNOR
Binary Input Gt T , 3 32X ~58x %44.2
(XNOR-Net) = I P o <31 bitcount

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

* Mohammad Rastegari, et al. "XNOR-Net: ImageNet Classification Using Binary Convolutional Neural
Networks." ECCV (2016).

Quantization: binary weights

Algorithm 1 Training an L-layers CNN with binary weights:

Input: A minibatch of inputs and targets (I, Y, cost function C(Y, Y), current weight W* and
current learning rate 7°.
Output: updated weight W' and updated learning rate n‘*?.

1: Binarizing weight filters:

2: forl =1to L do

3: for k™ filter in I layer do

4: A = +|Whlla

5: @k = sign(Wii)

6 Wik = Ak Bik

7. Y = BinaryForward(I, 3, A) // standard forward propagation except that convolutions are computed
using equation | or 11 .

8: % = BinaryBackward(S\q{ A W) // standard backward propagation except that gradients are computed
using W instead of W*

9: Wt+1 = UpdateParameters(Wt, g_l%’ nt) //' Any update rules (e.g.,SGD or ADAM)

10: T]t_H = UpdateLearningrate(nt s t) /I Any learning rate scheduling function

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Quantization: binary input and weights

Binary Dot Product: To approximate the dot product between X, W & R" such that
XTW ~ BHTaB, where H,B € {+1,—1}" and 3, € R, we solve the following
optimization:

o, B*, ", Hx = argmin|| X © W — faH © B (7)
a,B,5,H

C* =sign(Y) = sign(X) ©sign(W) = H* © B*

. Y,; X;[|W;; 1 1 .
yr = &0 2B (DXl) (5 1Wla) = 57

n n

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Quantization: accuracy

Top-1, Binary-Weight-Input Top-5, Binary-Weight Top-5, Binary-Weight-Input

Top-1, Binary-Weight

60 P 60 P ks s, o, e 80 **4_4_¢»+-+—+++—+ 80 e EmEnooT
S i S o,
= 5 60 560 3
g S 40 €40}
< < <

20 20
0 10 20 0 10 20 0 10 20
Number of epochs

Number of epochs Number of epochs

Number of epochs

Fig.5: This figure compares the imagenet classification accuracy on Top-1 and Top-5 across
training epochs. Our approaches BWN and XNOR-Net outperform BinaryConnect(BC) and Bi-

naryNet(BNN) in all the epochs by large margin(~17%).

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Quantization

Accuracy of a MLP (784-128-64-10) trained on MNIST

100% @ precise
6.78%

BOTl s

. e

.

Validation Accuracy (%)

PO e O3

O Quantize after Training © Quantize during Training

0%
8 7 6 5 4 3 2 1

Weight Precision (bits)

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Quantization

Impact of Resnet Quantization on Validation Accuracy of CIFAR-10

O D O D Depth
0.85 El Q14
O Oz
Ok Init Bits
0.80 H:
|
[l -
[[
H:s
32

Mode Validation

0.65

0.60

0.01 0.015 0.02 0.03 0.04 0.05 0.07 0.1 0.15 0.2 03 04 05 0.7 1

Param Size (MB)
PAU Param Size (M

OF COMdata is filte

r shows details about sum of Init Bits.
ps tanh. The view is filtered on sum ¢

de Validation. C

eight Mode, which

um of Width Factor. Shape shows details about sum of Depth. The
"

,whichranges from1tol

Smaller model: Knowledge distillation

e Knowledge distillation: use a teacher model (large model) to train a
student model (small model)

Teacher Network FitNet

w,= argmin Lpr (Wy)

(a) Teacher and Student Networks (b) Hints Training (¢) Knowledge Distillation

1
L7 (W Guided; Wr) = §Huh(X; Witint) — 7 (Vg (X; W Guided); Wr)| %,

* Romero, Adriana, et al. "Fitnets: Hints for thin deep nets." ICLR (2015).

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Smaller model: accuracy

[Algorithm | # params [Accuracy |

Compression
FitNet ~2.5M 91.61%
Teacher ~9M 90.18%
Mimic single ~54M 81.6% |_Algorithm | # params [Accuracy |
Mimic single ~70M 84.9% Compression
Mimic ensemble ~T70M 85.8% FitNet ~2.5M 64.96%
State-of-the-art methods Teacher ~9M 63.54%
Maxout 90.65% State-of-the-art methods
Network in Network 91.2% Maxout 61.43%
Deeply-Supervised Networks 91.78% Network in Network 64.32%
Deeply-Supervised Networks (19) 88.2% Deeply-Supervised Networks | 65.43%
Table 1: Accuracy on CIFAR-10 Table 2: Accuracy on CIFAR-100

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Discussion

What are the implications of these model compression techniques for serving?

e Specialized hardware for sparse models
o Song Han, et al. “EIE: Efficient Inference Engine on Compressed Deep Neural Network.”
ISCA 2016
e Accuracy and resource trade-off

o Han, Seungyeop, et al. "MCDNN: An Approximation-Based Execution Framework for Deep
Stream Processing Under Resource Constraints." MobiSys (2016).

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Serving system

PAUL G. ALLEN SCHOOL

EEEEEEEEEEEEEEEEEEEEEEEEEEEEE

Serving system

e Goals:
o High flexibility for writing applications
o High efficiency on GPUs
o Satisfy latency SLA
e C(Challenges
o Provide common abstraction for different frameworks
o Achieve high efficiency
m Sub-second latency SLA that limits the batch size
m Model optimization and multi-tenancy causes long tail

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Nexus: efficient neural network serving system

Frontend
Application Logic Remarks
— * Frontend runtime library allows
arbitrary app logic
« Packing models to achieve
higher utilization
» A GPU scheduler allows new
batching primitives
» A batch-aware global scheduler
allocates GPU cycles for each
model

7,

— App1 — App2 — App3 ----+ Control flow

30

Flexibility: Application runtime

class ModelHandler:
return output future

def Execute(input) — Async RPC, execute the model remotely

class AppBase:
return ModelHandler2 Send load model request to global scheduler

def GetModelHandler(framework, model, version, latency_sla)
Load models during setup time, implemented by developer
def Setup()

Process requests, implemented by developer

def Process(request)

31

Application example: Face recognition

class FaceRecApp(AppBase):
def Setup(self):
self.m1 = self.GetModelHandler
self.m2 = self.GetModelHandler

“vgg_face”, 1, 100)
“age_net”, 1, 100)

Load model from different framework
def Process(self, request):

ret1l = self.m1.Execute(request.image) Execute concurrently on remote
ret2 = GPUs

self.m2.Execute(request.image)
return Reply(request.user_idﬁ:EEE??:;ame" , ret2[“age”

Force to synchronize when accessing future data

32

Application example: Traffic Analysis

class TrafficApp(AppBase):
def Setup(self):
self.det = self.GetModelHandler(“darknet”, “yolo9006”, 1, 3600)
self.r1 = self.GetModelHandler(“caffe”, “vgg_face”, 1, 150)
self.r2 = self.GetModelHandler(“caffe”, “googlenet_car”, 1, 150)

def Process(self, request):
persons, cars = [], []
for obj in self.det.Execute(request.image):

if obj[“class”] == “person”:
persons.append(self.r1.Execute(request.image[obj[“rect”]])
elif obj[“class”] == “car”:

cars.append(self.r2.Execute(request.image[obj[“rect”]])
return Reply(request.user_id, persons, cars)

High Efficiency

Request rate For high request rate, high latency
Anigh SLA workload, saturate GPU
efficiency by using large batch size
350 =
| high 2 225 GPU saturate regi
ow |g> g 5 I Saturate region
Latency SLA 5 275 I
£ 2501 | batch size >= 32
g‘ 225 1 I
£ 2001 |
low 1751 |

o 0O 20 40 60 80 100 120
Workload characteristic batch size
VGG16 throughput vs batch size

High Efficiency

Request rate

%1/ batch size 16

104 4

N
o
S
(=]

N
o
o
o

Throughput (inputs/sec)

Throughput (inputs/sec

Ahlgh 0 25 so 75 100 135 0 50 100 150 200 250
VGG16 conv2_1 (winograd) VGG16 fcb
» Suppose we can choose a different
low high batch size for each op (layer), and
e allocate dedicated GPUs for each
Latency SLA o
D.
GPU
GPU }«)
low
GPU
Workload characteristic op, op, op,

Split Batching

~ Optimization problem
max tpj(b-)

max]
by..bn), maxtp] (b)/tpl(b)

equivalent to
mln Z 1/tp;(b;)
such that
z.lati (b;) + z overhead(out; * b;) < latency_sla

bi#bjq

36

Split Batching

Batch size 3 for entire model

2

104 i /

103 4

throughput (reg/s)
%~

0 5 10 15 20 25 30

batch size
—— input->pooll —— pool2->pool3 —— poold->pool5
—— pooll->pool2 —— pool3->pool4d —— pool5->prob

VGG16 optimal batch size for each segment
for latency SLA 15ms

Avg GPU throughput (req/s)

(@]
I

latency 15ms
Bl no split batch

latency 30ms

m split batch

37

High Efficiency

Request rate % [his type of wc;rkload cannot
Arion saturate GPU in temporal domain
19

» Suppose the optimal batch size is
b under latency SLA
time
low hiﬁ >
Latency SLA batch k
batch k+1 batchi
Wait for b inputs >\
low GPU is idle during this period

Workl -
M Exccute multiple models on one GPU)

Execute multiple models on a single GPU

< worst latency

Model Arequests i1 B EH B EH HE

>

GPU execution |[A1 || A2 || A3 || A4 A5\A1 A2 || A3 || A4 || AD

. J . J

patch k batch k+1
(a) Single model execution: worst latency is 2lat,

39

Execute multiple models on a single GPU

< worst latency

Model Arequests i1 B EH B EH HE

>

GPU execution |[A1 || A2 || A3 || A4 A5‘A1 A2 || A3 || A4 || AD

. J . J

batch k batch k-1
(a) Single model execution: worst latency is 2lat,
worst latency

|
I >
ModelArequests I Bl B BE EFEN D EE @ E@E M@ I
ModelBrequests my/@ BEE B EE E EE EE B _l_}\l-r\ :
GPU execution |A1 || B1||A2|[B2||A3|[B3| A4 | B4 ||AS5||B5| |Al]|| B A5
AN v J \ v J

Operations of model A and B interleave Next batch

(b) Execute multiple models concurrently:
worst latency for model A and B is 2(lat, + latg)

40

Execute multiple models on a single GPU

worst latency

GPU execution |A1|[|A2 [|A3||A4||A5||B1||B2||B3||B4||B5||A1| A2 | A3 || A4 | A5 ---

AN J \ J \. J
Y

batch kA batch kB batch kA+1

(c) Execute multiple models in round-robin fashion:
worst latency for model A is 2lat, + latg
worst latency for model B is lat, + 2latp

Use larger batch size as latency is reduced and predictive

41

High Efficiency

Request rate

Anigh
low high
>
Latency SLA
low

Workload characteristic

Solution depends

* [f saturate GPU in temporal domain
due to low latency: allocate
dedicated GPU(s)

* If not: can use multi-batching to
share GPU cycles with other models

Prefix batching for model specialization

« Specialization (long-term /
short-term) re-trains last a few

layers

+ —
))
) Q)
))
))

A new model

Prefix batching for model specialization

« Specialization (long-term / * Prefix batching allows batch
short-term) re-trains last a few execution for common prefix
layers

Different suffixes
, _ execute individually

\

—) —
[} .
Common prefix can be

3 batched together

A new model
44

Meet Latency SLA: Global scheduler

* First apply split batching and prefix batching if possible
» Multi-batching: bin-packing problem to pack models into GPUs
* Bin-packing optimization goal
* Minimize the resource usage (number of GPUS)
« Constraint
» Requests have to be served within latency SLA

* Degrees of freedom
» Split workloads into smaller tasks
« Change the batch size

45

Best-fit decreasing algorithms

, Application i, latency SLA L;
1. For each workload, T; is the max
throughput that can be achieved Model My, R

on a GPU within latency SLA, T,
and allocate dedicated GPUs

46

Best-fit decreasing algorithms

, Application i, latency SLA L;
1. For each workload, T; is the max

throughput that can be achieved = Model My, R
on a GPU within latency SLA, o

and allocate dedicated GPUs

2. For each residue workload, split Latency constraint L;
and exec cycle < »<4—» CyCles

batching cycle d; = b/r; exec cycle 2y, (b)

47

Best-fit decreasing algorithms

_ Application i, latency SLA L;
1. For each workload, T; is the max
throughput that can be achieved = Model My, R

on a GPU within latency SLA,

and allocate dedicated GPUs

2. For each residue workload, split Latency constraint L;
latency SLA into batching cycle ~ - = Bin to fitin
and exec cycle < ><—» EXecution

3. Sort all residue workloads by batching cycle d; = b/r; - exec cyclet; (@)

occupancy ¥, (B;)/d;, and All residue workloads
merge them by best-fit

sort

48

Reference

e Kim, Yong-Deok, et al. "Compression of deep convolutional neural networks for fast and low
power mobile applications." ICLR (2016).

e Song Han, et al. "Deep Compression: Compressing Deep Neural Networks with Pruning,
Trained Quantization and Huffman Coding." ICLR (2016).

e Romero, Adriana, et al. "Fitnets: Hints for thin deep nets." ICLR (2015).

e Mohammad Rastegari, et al. "XNOR-Net: ImageNet Classification Using Binary Convolutional
Neural Networks." ECCV (2016).
e Crankshaw, Daniel, et al. "Clipper: A Low-Latency Online Prediction Serving System." NSDI

(2017).

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

