Lecture 12: Model Serving
CSE599W: Spring 2018



(

S “That drink will get you to
: 2800 calories for today”

“I last saw your keys in the
store room”

“Remind Tom of the party”

“You're on page 263 of this
book”

Intelligent assistant
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Deep Learning Applications

d: 172330, dropped: 0, curre

Surveillance / Remote assistance

Neural networks model

We're excited for the

new new year future

Input keyboard



Model Serving Constraints

e latency constraint
o Batch size cannot be as large as possible when executing in the cloud
o Canonly run lightweight model in the device
e Resource constraint
o Battery limit for the device
o Memory limit for the device
o  Cost limit for using cloud
e Accuracy constraint

o Some loss is acceptable by using approximate models
o  Multi-level QoS
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Runtime Environment

Sensor | | Processor Radio >

streaming
Camera CPU Wifi CPU server
Touch screen  GPU 4G/ LTE GPU server
Microphone FPGA Bluetooth TPU / FPGA server

ASIC



Resource usage for a continuous vision app

Qualcomm SD810 LTE Amazon EC2
Omnivision  Tegra K1 GPU >800mW CPU cdlarge 2x400GFLOPS $0.1/h
90MmW = 34pJ/OP 15Mbps@700mW= 47nJ/b

Imager Processor Radio
Workload Deep learning 300GFLOPS @ 30GFLOPs/frame, 10fps
Budget Device power Cloud cost
30% of 10Wh for 10h = 300mW $10 person/year
Compute 9GFLOPS 3.5GFLOPS (GPU) / 8GFLOPS (CPU)
power

Huge gap between workload and budget .



Outline

e Model compression

e Serving System
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Model Compression

Tensor decomposition
Network pruning
Quantization

Smaller model
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Matrix decomposition

Fully-connected layer VN
e Memory reduction: (M +N)R

e Computation reduction: _ MY
(M + N)R

y 5w *\*

N J
Y

Merge into one matrix
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Tensor decomposition

Convolutional layer D2ST  .ST/R4R,
e Memory reduction: SRs;+ D?R3Ry+ TR, bounded/bV
e Computation reduction: D2STH'W'

SRsHW + D?RsR,H'W' + TRyH'W'

* Kim, Yong-Deok, et al. "Compression of deep convolutional neural networks for fast and low power
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Decompose the entire model

Conv | »‘ » FC 6 |* *

Conv la
= N v > 9

I«e-|
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Fine-tuning after decomposition

VGG-16:34.06 — 78.68 ... — 89.40

QO
4
& GoogleNet: 56.98 — 87.74 ... — 88.66
g 22 —
O
& VGG-S:60.10 — 81.09 ... — 84.19
'
2 80
®)
|_
AlexNet:23.39 — 74.74 ... — 78.33
757
3 -4 3
n=10 n =10 n=10"
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Accuracy & Latency after Decomposition

Model Top-5 | Weights | FLOPs Titan X
AlexNet 80.03 61M 725M 117ms 245m) 0.54ms
AlexNet* 78.33 11M 272M 43ms 72ml) 0.30ms
(imp.) (-1.70) | (x5.46) | (x2.67) | (x2.72) | (x3.41) | (x1.81)
VGG-S 84.60 103M | 2640M 357ms 825ml 1.86ms
VGG-S* 84.05 14M 549M 97ms 193mJ | 0.92ms
(imp.) (-0.55) | (x7.40) | (x4.80) | (x3.68) | (x4.26) | (x2.01)
GoogLeNet 88.90 6.9M 1566M 273ms 473ml) 1.83ms
GoogLeNet* | 88.66 4.7TM 760M 192ms 296ml) 1.48ms
(imp.) (-0.24) | (x1.28) | (x2.06) | (x1.42) | (x1.60) | (x1.23)
VGG-16 89.90 138M | 15484M | 1926ms | 4757mJ | 10.67ms
VGG-16* 89.40 127M | 3139M 576ms | 1346mJ | 4.58ms
(imp.) (-0.50) | (x1.09) | (x4.93) | (x3.34) | (x3.53) | (x2.33)
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Network pruning: Deep compression

Quantization: less bits per weight

Pruning: less number of weights

Ve N l
/ \
' 4 ) | I
. 1 !
: Train Connectivity g I
original ;, \ J | Same :
network 1 <z . ! accuracy |
I
E> : Prune Connections : I
original | J ||+ ex-13x |
size | <z 'reduction
1 ™ : |
|
, Train Weights | :
I L J ,' 1
\

e )
Cluster the Weights
L O J
'8 T
Generate Code Book
. J

) T
Quantize the Weight
kwith Code Book

Z

7

Retrain Code Book

o —— -

~

< Huffman Encoding

I
I
|
same : Encode Weights P—
accuracy | - < accuracy

|

|

|

= =

[ U p———

27x-31x | | Encode Index 1 35x-49x
reduction 5 :reduction

* Song Han, et al. "Deep Compression: Compressing Deep Neural Networks with Pruning, Trained
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Network pruning: prune the connections

Initialization: W) with W ~ N(0,%), iter = 0.
Hyper-parameter: threshold, §.
Output: W),

Train Connectivity before pruning after pruning
while not converged do

w® = w1 _ yly f(wt-1); z(t-1)),

t=t+1; )
end pruning
Prune Connections synapses
// initialize the mask by thresholding the weights.
Mask = 1(|W| > threshold);
W =W - Mask;
e —— Retrain Weights — .
while not converged do pruning
neurons

W — =1 _ .,](t)vf(nr(f—l):J.(f—l)):
W = w® . Mask;

t=1t+1;

end

Iterative Pruning -
threshold = threshold + d[iter + +];
goto Pruning Connections;

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING



Network pruning: weight sharing

cluster index fine-tuned 1 .
(2 bit uint) centroids centroids

Weight sharing by scalar quantization (top) and centroids fine-tuning (bottom).

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Use k-means clustering to
identify the shared weights
for each layer of a trained
network. Minimize
k
argminz Z lw — ¢;|?
C  i=lwee
Finetune the neural network
using shared weights.



Network pruning: accuracy

Table 1: The compression pipeline can save 35X to 49 x parameter storage with no loss of accuracy.

Network Top-1 Error  Top-5 Error | Parameters Egtr:press
LeNet-300-100 Ref 1.64% - 1070 KB
LeNet-300-100 Compressed | 1.58% - 27 KB 40x
LeNet-5 Ref 0.80% E 1720 KB

LeNet-5 Compressed 0.74% - 44 KB 39 x
AlexNet Ref 42.78% 19.73% 240 MB

AlexNet Compressed 42.78% 19.70% 6.9 MB 35 X
VGG-16 Ref 31.50% 11.32% 552 MB

VGG-16 Compressed 31.17% 10.91% 11.3MB 49 x
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Network pruning: accuracy vs compression

© Pruning + Quantization # Pruning Only Quantization Only < SVD

0.5%

0.0%
-0.5%
-1.0% ) ———
-1.5%
-2.0%
-2.5% ¢
-3.0%
-3.5%
-4.0% f
-4.5%

Accuracy Loss

1 7
2% 5% 8% 1% 14% 17% 20%

Model Size Ratio after Compression

Figure 6: Accuracy v.s. compression rate under different compression methods. Pruning and
quantization works best when combined.
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Quantization: XNOR-Net

Network Variations Operations | Memory Computation | Accuracy on
used in Saving Saving ImageNet
Convolution | (Inference) | (Inference) (AlexNet)
Real-Value Inputs ‘ 1
Standard . : | Real-Value Weights
Convolution |g11.021 034~ | [ oua 4 6k = 1x 1x %56.7
-0.250.61... 0.52° o 0687
| Real-Value Inputs
- : Binary Weights
Binary Weight | 5 11.0.21 - -0.34" T 1 Ty = ~32X ~2X %56.8
-0.250.61 ... 0.52 = z
Binary Inputs i
BinaryWeight : Binary Weights XNOR
Binary Input Gt T , 3 32X ~58x %44.2
(XNOR-Net) = I P o <31 bitcount
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* Mohammad Rastegari, et al. "XNOR-Net: ImageNet Classification Using Binary Convolutional Neural
Networks." ECCV (2016).



Quantization: binary weights

Algorithm 1 Training an L-layers CNN with binary weights:

Input: A minibatch of inputs and targets (I, Y, cost function C(Y, Y), current weight W* and
current learning rate 7°.
Output: updated weight W' and updated learning rate n‘*?.

1: Binarizing weight filters:

2: forl =1to L do

3:  for k™ filter in I layer do

4: A = +|Whlla

5: @k = sign(Wii)

6 Wik = Ak Bik

7. Y = BinaryForward(I, 3, A) // standard forward propagation except that convolutions are computed
using equation | or 11 .

8: % = BinaryBackward( S\q{ A W) // standard backward propagation except that gradients are computed
using W instead of W*

9: Wt+1 = UpdateParameters(Wt, g_l%’ nt) //' Any update rules (e.g.,SGD or ADAM)

10: T]t_H = UpdateLearningrate(nt s t) /I Any learning rate scheduling function

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING



Quantization: binary input and weights

Binary Dot Product: To approximate the dot product between X, W & R" such that
XTW ~ BHTaB, where H,B € {+1,—1}" and 3, € R, we solve the following
optimization:

o, B*, ", Hx = argmin|| X © W — faH © B (7)
a,B,5,H

C* =sign(Y) = sign(X) ©sign(W) = H* © B*

. Y,; X;[|W;; 1 1 .
yr = &0 2B (DXl ) (5 1Wla ) = 57

n n
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Quantization: accuracy

Top-1, Binary-Weight-Input Top-5, Binary-Weight Top-5, Binary-Weight-Input

Top-1, Binary-Weight

60 P 60 P ks s, o, e 80 **4_4_¢»+-+—+++—+ 80 e  EmEnooT
S i S o,
= 5 60 560 3
g S 40 €40}
< < <

20 20
0 10 20 0 10 20 0 10 20
Number of epochs

Number of epochs Number of epochs

Number of epochs

Fig.5: This figure compares the imagenet classification accuracy on Top-1 and Top-5 across
training epochs. Our approaches BWN and XNOR-Net outperform BinaryConnect(BC) and Bi-

naryNet(BNN) in all the epochs by large margin(~17%).
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Quantization

Accuracy of a MLP (784-128-64-10) trained on MNIST

100% @ precise
6.78%

BOTl s

. e

.

Validation Accuracy (%)

PO e O3

O Quantize after Training © Quantize during Training

0%
8 7 6 5 4 3 2 1

Weight Precision (bits)
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Quantization

Impact of Resnet Quantization on Validation Accuracy of CIFAR-10
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Smaller model: Knowledge distillation

e Knowledge distillation: use a teacher model (large model) to train a
student model (small model)

Teacher Network FitNet

w,= argmin Lpr (Wy)

(a) Teacher and Student Networks (b) Hints Training (¢) Knowledge Distillation

1
L7 (W Guided; Wr) = §Huh(X; Witint) — 7 (Vg (X; W Guided); Wr)| %,

* Romero, Adriana, et al. "Fitnets: Hints for thin deep nets." ICLR (2015).
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Smaller model: accuracy

[ Algorithm | # params [ Accuracy |

Compression
FitNet ~2.5M 91.61%
Teacher ~9M 90.18%
Mimic single ~54M 81.6% |_Algorithm | # params [ Accuracy |
Mimic single ~70M 84.9% Compression
Mimic ensemble ~T70M 85.8% FitNet ~2.5M 64.96%
State-of-the-art methods Teacher ~9M 63.54%
Maxout 90.65% State-of-the-art methods
Network in Network 91.2% Maxout 61.43%
Deeply-Supervised Networks 91.78% Network in Network 64.32%
Deeply-Supervised Networks (19) 88.2% Deeply-Supervised Networks | 65.43%
Table 1: Accuracy on CIFAR-10 Table 2: Accuracy on CIFAR-100
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Discussion

What are the implications of these model compression techniques for serving?

e Specialized hardware for sparse models
o Song Han, et al. “EIE: Efficient Inference Engine on Compressed Deep Neural Network.”
ISCA 2016
e Accuracy and resource trade-off

o Han, Seungyeop, et al. "MCDNN: An Approximation-Based Execution Framework for Deep
Stream Processing Under Resource Constraints." MobiSys (2016).
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Serving system
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Serving system

e Goals:
o High flexibility for writing applications
o High efficiency on GPUs
o Satisfy latency SLA
e C(Challenges
o Provide common abstraction for different frameworks
o Achieve high efficiency
m Sub-second latency SLA that limits the batch size
m  Model optimization and multi-tenancy causes long tail
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Nexus: efficient neural network serving system

Frontend
Application Logic Remarks
— * Frontend runtime library allows
arbitrary app logic
« Packing models to achieve
higher utilization
» A GPU scheduler allows new
batching primitives
» A batch-aware global scheduler
allocates GPU cycles for each
model

7,

— App1 — App2 — App3 ----+ Control flow

30



Flexibility: Application runtime

class ModelHandler:
# return output future

def Execute(input) — Async RPC, execute the model remotely

class AppBase:
# return ModelHandler2 Send load model request to global scheduler

def GetModelHandler(framework, model, version, latency_sla)
# Load models during setup time, implemented by developer
def Setup()

# Process requests, implemented by developer

def Process(request)

31



Application example: Face recognition

class FaceRecApp(AppBase):
def Setup(self):
self.m1 = self.GetModelHandler
self.m2 = self.GetModelHandler

“vgg_face”, 1, 100)
“age_net”, 1, 100)

Load model from different framework
def Process(self, request):

ret1l = self.m1.Execute(request.image) Execute concurrently on remote
ret2 = GPUs

self.m2.Execute(request.image)
return Reply(request.user_idﬁ:EEE??:;ame" , ret2[“age”

Force to synchronize when accessing future data

32



Application example: Traffic Analysis

class TrafficApp(AppBase):
def Setup(self):
self.det = self.GetModelHandler(“darknet”, “yolo9006”, 1, 3600)
self.r1 = self.GetModelHandler(“caffe”, “vgg_face”, 1, 150)
self.r2 = self.GetModelHandler(“caffe”, “googlenet_car”, 1, 150)

def Process(self, request):
persons, cars = [], []
for obj in self.det.Execute(request.image):

if obj[“class”] == “person”:
persons.append(self.r1.Execute(request.image[obj[“rect”]])
elif obj[“class”] == “car”:

cars.append(self.r2.Execute(request.image[obj[“rect”]])
return Reply(request.user_id, persons, cars)



High Efficiency

Request rate  For high request rate, high latency
Anigh SLA workload, saturate GPU
efficiency by using large batch size
350 =
| high 2 225 GPU saturate regi
ow |g> g 5 I Saturate region
Latency SLA 5 275 I
£ 2501 | batch size >= 32
g‘ 225 1 I
£ 2001 |
low 1751 |

o 0O 20 40 60 80 100 120
Workload characteristic batch size
VGG16 throughput vs batch size



High Efficiency

Request rate

%1/ batch size 16

104 4

N
o
S
(=]

N
o
o
o

Throughput (inputs/sec)

Throughput (inputs/sec

Ahlgh 0 25 so 75 100 135 0 50 100 150 200 250
VGG16 conv2_1 (winograd) VGG16 fcb
» Suppose we can choose a different
low high batch size for each op (layer), and
e allocate dedicated GPUs for each
Latency SLA o
D.
GPU
GPU }« )
low
GPU
Workload characteristic op,  op, op,



Split Batching

~ Optimization problem
max tpj(b-)

max ]
by..bn ), maxtp] (b )/tpl(b )

equivalent to
mln Z 1/tp;(b;)
such that
z.lati (b;) + z overhead(out; * b;) < latency_sla

bi#bjq

36



Split Batching

Batch size 3 for entire model

2

104 i /

103 4

throughput (reg/s)
%~

0 5 10 15 20 25 30

batch size
—— input->pooll —— pool2->pool3 —— poold->pool5
—— pooll->pool2 —— pool3->pool4d —— pool5->prob

VGG16 optimal batch size for each segment
for latency SLA 15ms

Avg GPU throughput (req/s)

(@]
I

latency 15ms
Bl no split batch

latency 30ms

m split batch
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High Efficiency

Request rate % [ his type of wc;rkload cannot
Arion saturate GPU in temporal domain
19

» Suppose the optimal batch size is
b under latency SLA
time
low hiﬁ >
Latency SLA batch k
batch k+1 batchi
Wait for b inputs >\
low GPU is idle during this period

Workl -
M Exccute multiple models on one GPU )



Execute multiple models on a single GPU

< worst latency

Model Arequests i1 B EH B EH HE

>

GPU execution |[A1 || A2 || A3 || A4 A5\A1 A2 || A3 || A4 || AD

. J . J

patch k batch k+1
(a) Single model execution: worst latency is 2lat,
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Execute multiple models on a single GPU

< worst latency

Model Arequests i1 B EH B EH HE

>

GPU execution |[A1 || A2 || A3 || A4 A5‘A1 A2 || A3 || A4 || AD

. J . J

batch k batch k-1
(a) Single model execution: worst latency is 2lat,
worst latency

|
I >
ModelArequests I Bl B BE EFEN D EE @ E@E M@ I
ModelBrequests my/@ BEE B EE E EE EE B _l_}\l-r\ :
GPU execution |A1 || B1||A2|[B2||A3|[B3| A4 | B4 ||AS5||B5| |Al]|| B A5
AN v J \ v J

Operations of model A and B interleave Next batch

(b) Execute multiple models concurrently:
worst latency for model A and B is 2(lat, + latg)
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Execute multiple models on a single GPU

worst latency

GPU execution |A1|[|A2 [|A3||A4||A5||B1||B2||B3||B4||B5||A1| A2 | A3 || A4 | A5 ---

AN J \ J \. J
Y

batch kA batch kB batch kA+1

(c) Execute multiple models in round-robin fashion:
worst latency for model A is 2lat, + latg
worst latency for model B is lat, + 2latp

Use larger batch size as latency is reduced and predictive
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High Efficiency

Request rate

Anigh
low high
>
Latency SLA
low

Workload characteristic

Solution depends

* [f saturate GPU in temporal domain
due to low latency: allocate
dedicated GPU(s)

* If not: can use multi-batching to
share GPU cycles with other models



Prefix batching for model specialization

« Specialization (long-term /
short-term) re-trains last a few

layers

+ —
) )
) Q )
) )
) )

A new model



Prefix batching for model specialization

« Specialization (long-term / * Prefix batching allows batch
short-term) re-trains last a few execution for common prefix
layers

Different suffixes
, _ execute individually

\

— ) —
[} .
Common prefix can be

3 batched together

A new model
44



Meet Latency SLA: Global scheduler

* First apply split batching and prefix batching if possible
» Multi-batching: bin-packing problem to pack models into GPUs
* Bin-packing optimization goal
* Minimize the resource usage (number of GPUS)
« Constraint
» Requests have to be served within latency SLA

* Degrees of freedom
» Split workloads into smaller tasks
« Change the batch size
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Best-fit decreasing algorithms

, Application i, latency SLA L;
1. For each workload, T; is the max
throughput that can be achieved Model My, R

on a GPU within latency SLA, T,
and allocate dedicated GPUs
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Best-fit decreasing algorithms

, Application i, latency SLA L;
1. For each workload, T; is the max

throughput that can be achieved = Model My, R
on a GPU within latency SLA, o

and allocate dedicated GPUs

2. For each residue workload, split Latency constraint L;
and exec cycle < »<4—»  CyCles

batching cycle d; = b/r; exec cycle 2y, (b)
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Best-fit decreasing algorithms

_ Application i, latency SLA L;
1. For each workload, T; is the max
throughput that can be achieved = Model My, R

on a GPU within latency SLA,

and allocate dedicated GPUs

2. For each residue workload, split Latency constraint L;
latency SLA into batching cycle ~ - = Bin to fitin
and exec cycle < ><—»  EXecution

3. Sort all residue workloads by batching cycle d; = b/r; - exec cyclet; (@)

occupancy ¥, (B;)/d;, and All residue workloads
merge them by best-fit

sort

48
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