Lecture 12: Model Serving CSE599W: Spring 2018

Deep Learning Applications

"That drink will get you to 2800 calories for today"

"I last saw your keys in the store room"

"Remind Tom of the party"

Intelligent assistant

Surveillance / Remote assistance

Input keyboard

Model Serving Constraints

- Latency constraint
 - Batch size cannot be as large as possible when executing in the cloud
 - Can only run lightweight model in the device
- Resource constraint
 - Battery limit for the device
 - Memory limit for the device
 - Cost limit for using cloud
- Accuracy constraint
 - Some loss is acceptable by using approximate models
 - Multi-level QoS

Runtime Environment

Resource usage for a continuous vision app

Outline

- Model compression
- Serving System

Model Compression

- Tensor decomposition
- Network pruning
- Quantization
- Smaller model

Matrix decomposition

Fully-connected layer MNMemory reduction: (M+N)R $\frac{MN}{(M+N)R}$ Computation reduction: lacksquareR R * * Μ Μ R Ν Ν Merge into one matrix

Tensor decomposition

PAUL G. ALLEN SCHOOL of computer science & engineering * Kim, Yong-Deok, et al. "Compression of deep convolutional neural networks for fast and low power mobile applications." ICLR (2016).

Decompose the entire model

Fine-tuning after decomposition

W PAUL G. ALLEN SCHOOL of computer science & engineering

Accuracy & Latency after Decomposition

Model	Top-5	Weights	FLOPs	S	6	Titan X
AlexNet	80.03	61M	725M	117ms	245mJ	0.54ms
AlexNet*	78.33	11M	272M	43ms	72mJ	0.30ms
(imp.)	(-1.70)	$(\times 5.46)$	$(\times 2.67)$	$(\times 2.72)$	$(\times 3.41)$	$(\times 1.81)$
VGG-S	84.60	103M	2640M	357ms	825mJ	1.86ms
$VGG-S^*$	84.05	14M	549M	97ms	193mJ	0.92ms
(imp.)	(-0.55)	$(\times 7.40)$	$(\times 4.80)$	$(\times 3.68)$	$(\times 4.26)$	$(\times 2.01)$
GoogLeNet	88.90	6.9M	1566M	273ms	473mJ	1.83ms
GoogLeNet*	88.66	4.7M	760M	192ms	296mJ	1.48ms
(imp.)	(-0.24)	$(\times 1.28)$	$(\times 2.06)$	$(\times 1.42)$	$(\times 1.60)$	$(\times 1.23)$
VGG-16	89.90	138M	15484M	1926ms	4757mJ	10.67ms
VGG-16*	89.40	127M	3139M	576ms	1346mJ	4.58ms
(imp.)	(-0.50)	$(\times 1.09)$	$(\times 4.93)$	$(\times 3.34)$	$(\times 3.53)$	$(\times 2.33)$

Network pruning: Deep compression

PALIE G ALLEN SCHOOL

COMPUTER SCIENCE & ENGINEERING

* Song Han, et al. "Deep Compression: Compressing Deep Neural Networks with Pruning, Trained Quantization and Huffman Coding." ICLR (2016).

Network pruning: prune the connections

goto Pruning Connections;

Network pruning: weight sharing

 Use k-means clustering to identify the shared weights for each layer of a trained network. Minimize

$$\underset{C}{\operatorname{arg\,min}} \sum_{i=1}^{k} \sum_{w \in c_i} |w - c_i|^2$$

2. Finetune the neural network using shared weights.

Weight sharing by scalar quantization (top) and centroids fine-tuning (bottom).

Network pruning: accuracy

Table 1: The compression pipeline can save $35 \times$ to $49 \times$ parameter storage with no loss of accuracy.

Network	Top-1 Error	Top-5 Error	Parameters	Compress Rate
LeNet-300-100 Ref	1.64%	1-	1070 KB	
LeNet-300-100 Compressed	1.58%	-	27 KB	40 imes
LeNet-5 Ref	0.80%	. 	1720 KB	
LeNet-5 Compressed	0.74%	-	44 KB	39 imes
AlexNet Ref	42.78%	19.73%	240 MB	
AlexNet Compressed	42.78%	19.70%	6.9 MB	35 imes
VGG-16 Ref	31.50%	11.32%	552 MB	
VGG-16 Compressed	31.17%	10.91%	11.3 MB	49 imes

Network pruning: accuracy vs compression

Figure 6: Accuracy v.s. compression rate under different compression methods. Pruning and quantization works best when combined.

Quantization: XNOR-Net

	Network Variations	Operations used in Convolution	Memory Saving (Inference)	Computation Saving (Inference)	Accuracy on ImageNet (AlexNet)
Standard Convolution	Real-Value Inputs 0.11 -0.210.34 -0.25 0.61 0.52 Real-Value Weights 0.12 -1.2 0.41 -0.2 0.5 0.68	+,-,×	1x	1x	%56.7
Binary Weight	Binary Weights 0.11 -0.210.34 1 -1 1 -0.25 0.61 0.52 -1 1 1	+,-	~32x	~2x	%56.8
BinaryWeight Binary Input (XNOR-Net)	Binary Inputs 1 -11 -1 1 1 Binary Weights 1 -1 1 -1 1 1	XNOR , bitcount	~32x	~58x	%44.2

* Mohammad Rastegari, et al. "XNOR-Net: ImageNet Classification Using Binary Convolutional Neural Networks." ECCV (2016).

Quantization: binary weights

Algorithm 1 Training an *L*-layers CNN with binary weights:

Input: A minibatch of inputs and targets (**I**, **Y**), cost function $C(\mathbf{Y}, \hat{\mathbf{Y}})$, current weight \mathcal{W}^t and current learning rate η^t .

Output: updated weight \mathcal{W}^{t+1} and updated learning rate η^{t+1} .

- 1: Binarizing weight filters:
- 2: for l = 1 to L do
- 3: **for** k^{th} filter in l^{th} layer **do**
- 4: $\mathcal{A}_{lk} = \frac{1}{n} \| \mathcal{W}_{lk}^t \|_{\ell_1}$
- 5: $\mathcal{B}_{lk} = \operatorname{sign}(\mathcal{W}_{lk}^t)$
- 6: $\widetilde{\mathcal{W}}_{lk} = \mathcal{A}_{lk} \mathcal{B}_{lk}$
- 7: $\hat{\mathbf{Y}} = \mathbf{BinaryForward}(\mathbf{I}, \mathcal{B}, \mathcal{A})$ // standard forward propagation except that convolutions are computed using equation 1 or 11
- 8: $\frac{\partial C}{\partial \widetilde{\mathcal{W}}} = \mathbf{BinaryBackward}(\frac{\partial C}{\partial \hat{\mathbf{Y}}}, \widetilde{\mathcal{W}})$ // standard backward propagation except that gradients are computed using $\widetilde{\mathcal{W}}$ instead of \mathcal{W}^t

9:
$$\mathcal{W}^{t+1} =$$
UpdateParameters $(\mathcal{W}^t, \frac{\partial C}{\partial \widetilde{\mathcal{W}}}, \eta_t)$ // Any update rules (*e.g.*, SGD or ADAM)

10: $\eta^{t+1} =$ UpdateLearningrate (η^t, t) // Any learning rate scheduling function

PAUL G. ALLEN SCHOOL of computer science & engineering

Quantization: binary input and weights

Binary Dot Product: To approximate the dot product between $\mathbf{X}, \mathbf{W} \in \mathbb{R}^n$ such that $\mathbf{X}^\mathsf{T} \mathbf{W} \approx \beta \mathbf{H}^\mathsf{T} \alpha \mathbf{B}$, where $\mathbf{H}, \mathbf{B} \in \{+1, -1\}^n$ and $\beta, \alpha \in \mathbb{R}^+$, we solve the following optimization:

$$\alpha^*, \mathbf{B}^*, \beta^*, \mathbf{H}^* = \underset{\alpha, \mathbf{B}, \beta, \mathbf{H}}{\operatorname{argmin}} \| \mathbf{X} \odot \mathbf{W} - \beta \alpha \mathbf{H} \odot \mathbf{B} \|$$
(7)

$$\mathbf{C}^* = \operatorname{sign}(\mathbf{Y}) = \operatorname{sign}(\mathbf{X}) \odot \operatorname{sign}(\mathbf{W}) = \mathbf{H}^* \odot \mathbf{B}^*$$

$$\gamma^* = \frac{\sum |\mathbf{Y}_i|}{n} = \frac{\sum |\mathbf{X}_i| |\mathbf{W}_i|}{n} \approx \left(\frac{1}{n} \|\mathbf{X}\|_{\ell_1}\right) \left(\frac{1}{n} \|\mathbf{W}\|_{\ell_1}\right) = \beta^* \alpha^*$$

Quantization: accuracy

Fig. 5: This figure compares the imagenet classification accuracy on Top-1 and Top-5 across training epochs. Our approaches BWN and XNOR-Net outperform BinaryConnect(BC) and BinaryNet(BNN) in all the epochs by large margin($\sim 17\%$).

Quantization

Weight Precision (bits)

Quantization

PAU Param Size (MB) vs. Mode Validation. Color shows details about sum of Init Bits. Size shows sum of Width Factor. Shape shows details about sum of Depth. The **OF COM** data is filtered on Weight Mode, which keeps tanh. The view is filtered on sum of Width Factor, which ranges from 1 to 1.

Smaller model: Knowledge distillation

ER SCIENCE & ENGINEERING

• Knowledge distillation: use a teacher model (large model) to train a student model (small model)

Smaller model: accuracy

Algorithm	# params	Accuracy
Compression		
FitNet	$\sim 2.5 M$	91.61 %
Teacher	$\sim 9M$	90.18%
Mimic single	\sim 54M	84.6%
Mimic single	$\sim 70 \mathrm{M}$	84.9%
Mimic ensemble	$\sim 70 M$	85.8%
State-of-the-art me	thods	
Maxout	90.65%	
Network in Networ	91.2%	
Deeply-Supervised	91.78%	
Deeply-Supervised	88.2%	

Table 1: Accuracy on CIFAR-10

Algorithm	# params	Accuracy
Compression		
FitNet	$\sim 2.5 M$	64.96 %
Teacher	$\sim 9M$	63.54%
State-of-the-a	rt methods	
Maxout	61.43%	
Network in N	64.32%	
Deeply-Super	65.43%	

Table 2: Accuracy on CIFAR-100

Discussion

What are the implications of these model compression techniques for serving?

- Specialized hardware for sparse models
 - Song Han, et al. "EIE: Efficient Inference Engine on Compressed Deep Neural Network." ISCA 2016
- Accuracy and resource trade-off
 - Han, Seungyeop, et al. "MCDNN: An Approximation-Based Execution Framework for Deep Stream Processing Under Resource Constraints." MobiSys (2016).

Serving system

Serving system

- Goals:
 - High flexibility for writing applications
 - High efficiency on GPUs
 - Satisfy latency SLA
- Challenges
 - Provide common abstraction for different frameworks
 - Achieve high efficiency
 - Sub-second latency SLA that limits the batch size
 - Model optimization and multi-tenancy causes long tail

Nexus: efficient neural network serving system

→ App 2 → App 3 ---- Control flow

App 1

Remarks

- Frontend runtime library allows arbitrary app logic
- Packing models to achieve higher utilization
- A GPU scheduler allows new batching primitives
- A batch-aware global scheduler allocates GPU cycles for each model

Flexibility: Application runtime

class ModelHandler: # return output future def Execute(input) Async RPC, execute the model remotely class AppBase: Send load model request to global scheduler # return ModelHandler def GetModelHandler(framework, model, version, latency_sla) # Load models during setup time, implemented by developer def Setup() # Process requests, implemented by developer def Process(request)

Application example: Face recognition

```
class FaceRecApp(AppBase):
def Setup(self):
  self.m1 = self.GetModelHandler("caffe", "vgg_face", 1, 100)
  self.m2 = self.GetModelHandler("mxnet"/ "age_net", 1, 100)
                                              _oad model from different framework
def Process(self, request):
  ret1 = self.m1.Execute(request.image) Execute concurrently on remote
                                              GPUs
  ret2 = self.m2.Execute(request.image)
  return Reply(request.user_id, ret1["name"], ret2["age"]
```

Force to synchronize when accessing future data

Application example: Traffic Analysis

```
class TrafficApp(AppBase):
def Setup(self):
  self.det = self.GetModelHandler("darknet", "yolo9000", 1, 300)
  self.r1 = self.GetModelHandler("caffe", "vgg_face", 1, 150)
  self.r2 = self.GetModelHandler("caffe", "googlenet_car", 1, 150)
def Process(self, request):
  persons, cars = [], []
  for obj in self.det.Execute(request.image):
    if obj["class"] == "person":
      persons.append(self.r1.Execute(request.image[obj["rect"]])
    elif obj["class"] == "car":
      cars.append(self.r2.Execute(request.image[obj["rect"]])
  return Reply(request.user_id, persons, cars)
```

High Efficiency

Split Batching

 Optimization problem $\max_{\substack{j \\ b_1 \dots b_n}} \frac{\max_j tp_j(b_j)}{\sum_i \max_j tp_j(b_j) / tp_i(b_i)}$ equivalent to $\min_{b_1\dots b_n} \sum_i 1/t p_i(b_i)$ such that $\sum_{i} lat_{i}(b_{i}) + \sum_{b_{i} \neq b_{i+1}} overhead(out_{i} * b_{i}) \leq latency_sla$

Split Batching

Batch size 3 for entire model

High Efficiency

Execute multiple models on a single GPU

Execute multiple models on a single GPU

Execute multiple models on a single GPU

(c) Execute multiple models in round-robin fashion: worst latency for model A is $2lat_A + lat_B$ worst latency for model B is $lat_A + 2lat_B$

Use larger batch size as latency is reduced and predictive

High Efficiency

Solution depends

- If saturate GPU in temporal domain due to low latency: allocate dedicated GPU(s)
- If not: can use multi-batching to share GPU cycles with other models

Workload characteristic

Prefix batching for model specialization

 Specialization (long-term / short-term) re-trains last a few layers

A new model

Prefix batching for model specialization

- Specialization (long-term / short-term) re-trains last a few layers
- Prefix batching allows batch execution for common prefix

Meet Latency SLA: Global scheduler

- First apply split batching and prefix batching if possible
- Multi-batching: bin-packing problem to pack models into GPUs
- Bin-packing optimization goal
 - Minimize the resource usage (number of GPUs)
- Constraint
 - Requests have to be served within latency SLA
- Degrees of freedom
 - Split workloads into smaller tasks
 - Change the batch size

Best-fit decreasing algorithms

1. For each workload, T_i is the max throughput that can be achieved on a GPU within latency SLA, and allocate dedicated GPUs Application i, latency SLA L_i

Best-fit decreasing algorithms

- 1. For each workload, T_i is the max throughput that can be achieved on a GPU within latency SLA, and allocate dedicated GPUs
- 2. For each residue workload, split latency SLA into batching cycle and exec cycle

Application i, latency SLA L_i

Best-fit decreasing algorithms

- 1. For each workload, *T_i* is the max throughput that can be achieved on a GPU within latency SLA, and allocate dedicated GPUs
- 2. For each residue workload, split latency SLA into batching cycle and exec cycle
- 3. Sort all residue workloads by occupancy $\ell_{k_i}(B_i)/d_i$, and merge them by best-fit

Application i, latency SLA L_i

Reference

- Kim, Yong-Deok, et al. "Compression of deep convolutional neural networks for fast and low power mobile applications." ICLR (2016).
- Song Han, et al. "Deep Compression: Compressing Deep Neural Networks with Pruning, Trained Quantization and Huffman Coding." ICLR (2016).
- Romero, Adriana, et al. "Fitnets: Hints for thin deep nets." ICLR (2015).
- Mohammad Rastegari, et al. "XNOR-Net: ImageNet Classification Using Binary Convolutional Neural Networks." ECCV (2016).
- Crankshaw, Daniel, et al. "Clipper: A Low-Latency Online Prediction Serving System." NSDI (2017).

