
Lecture 12: Model Serving

CSE599W: Spring 2018

Deep Learning Applications

“That drink will get you to
2800 calories for today”

“I last saw your keys in the
store room”

“Remind Tom of the party”

“You’re on page 263 of this
book”

Intelligent assistant Surveillance / Remote assistance Input keyboard

Model Serving Constraints
● Latency constraint

○ Batch size cannot be as large as possible when executing in the cloud
○ Can only run lightweight model in the device

● Resource constraint
○ Battery limit for the device
○ Memory limit for the device
○ Cost limit for using cloud

● Accuracy constraint
○ Some loss is acceptable by using approximate models
○ Multi-level QoS

Runtime Environment

Sensor Processor Radio Cloud

4

Camera
Touch screen
Microphone

CPU
GPU
FPGA
ASIC

Wifi
4G / LTE
Bluetooth

CPU server
GPU server
TPU / FPGA server

streaming

Resource usage for a continuous vision app

Imager Processor Radio

Omnivision
OV2740
90mW

Tegra K1 GPU
290GOPS@10W
= 34pJ/OP

Qualcomm SD810 LTE
>800mW
Atheros 802.11 a/g
15Mbps@700mW= 47nJ/b

Cloud

Amazon EC2
CPU c4.large 2x400GFLOPS $0.1/h
GPU g2.2xlarge 2.3TFLOPS $0.65/h

5Huge gap between workload and budget

Budget
Device power Cloud cost

30% of 10Wh for 10h = 300mW $10 person/year

Workload Deep learning 300GFLOPS @ 30GFLOPs/frame, 10fps

Compute
power

9GFLOPS 3.5GFLOPS (GPU) / 8GFLOPS (CPU)

Outline
● Model compression

● Serving System

Model Compression
● Tensor decomposition
● Network pruning
● Quantization
● Smaller model

Matrix decomposition

* *

Fully-connected layer
● Memory reduction:
● Computation reduction:

Merge into one matrix

M

N

M

R

R

R

N

Tensor decomposition
Convolutional layer
● Memory reduction:
● Computation reduction:

* Kim, Yong-Deok, et al. "Compression of deep convolutional neural networks for fast and low power
mobile applications." ICLR (2016).

bounded by

Decompose the entire model

Fine-tuning after decomposition

Accuracy & Latency after Decomposition

Network pruning: Deep compression

* Song Han, et al. "Deep Compression: Compressing Deep Neural Networks with Pruning, Trained
Quantization and Huffman Coding." ICLR (2016).

Network pruning: prune the connections

Network pruning: weight sharing
1. Use k-means clustering to

identify the shared weights
for each layer of a trained
network. Minimize

2. Finetune the neural network
using shared weights.

Network pruning: accuracy

Network pruning: accuracy vs compression

Quantization: XNOR-Net

* Mohammad Rastegari, et al. "XNOR-Net: ImageNet Classification Using Binary Convolutional Neural
Networks." ECCV (2016).

Quantization: binary weights

Quantization: binary input and weights

Quantization: accuracy

Quantization

Quantization

Smaller model: Knowledge distillation
● Knowledge distillation: use a teacher model (large model) to train a

student model (small model)

* Romero, Adriana, et al. "Fitnets: Hints for thin deep nets." ICLR (2015).

Smaller model: accuracy

Discussion
What are the implications of these model compression techniques for serving?

● Specialized hardware for sparse models
○ Song Han, et al. “EIE: Efficient Inference Engine on Compressed Deep Neural Network.”

ISCA 2016

● Accuracy and resource trade-off
○ Han, Seungyeop, et al. "MCDNN: An Approximation-Based Execution Framework for Deep

Stream Processing Under Resource Constraints." MobiSys (2016).

Serving system

Serving system
● Goals:

○ High flexibility for writing applications
○ High efficiency on GPUs
○ Satisfy latency SLA

● Challenges
○ Provide common abstraction for different frameworks
○ Achieve high efficiency

■ Sub-second latency SLA that limits the batch size
■ Model optimization and multi-tenancy causes long tail

FrontendFrontend

Nexus: efficient neural network serving system
…requests

unit query

Frontend

30

Backend
M2

GPU

scheduler

Backend

GPU

scheduler

M3M1

Backend
M2

GPU

scheduler

Backend
M2

GPU

scheduler

Backend

GPU

scheduler

M4M3

Remarks
• Frontend runtime library allows

arbitrary app logic
• Packing models to achieve

higher utilization
• A GPU scheduler allows new

batching primitives
• A batch-aware global scheduler

allocates GPU cycles for each
model

Global
Scheduler

App 1 App 2 App 3 Control flow

Nexus Runtime
Load Balancer Dispatch Approx. lib

Application Logic

Flexibility: Application runtime
class ModelHandler:
 # return output future
 def Execute(input)

class AppBase:
 # return ModelHandler
 def GetModelHandler(framework, model, version, latency_sla)
 # Load models during setup time, implemented by developer
 def Setup()
 # Process requests, implemented by developer
 def Process(request)

31

Async RPC, execute the model remotely

Send load model request to global scheduler

Application example: Face recognition
class FaceRecApp(AppBase):
 def Setup(self):
 self.m1 = self.GetModelHandler(“caffe”, “vgg_face”, 1, 100)
 self.m2 = self.GetModelHandler(“mxnet”, “age_net”, 1, 100)

 def Process(self, request):
 ret1 = self.m1.Execute(request.image)
 ret2 = self.m2.Execute(request.image)
 return Reply(request.user_id, ret1[“name”], ret2[“age”])

32

Load model from different framework

Execute concurrently on remote
GPUs

Force to synchronize when accessing future data

Application example: Traffic Analysis
class TrafficApp(AppBase):
 def Setup(self):
 self.det = self.GetModelHandler(“darknet”, “yolo9000”, 1, 300)
 self.r1 = self.GetModelHandler(“caffe”, “vgg_face”, 1, 150)
 self.r2 = self.GetModelHandler(“caffe”,“googlenet_car”, 1, 150)

 def Process(self, request):
 persons, cars = [], []
 for obj in self.det.Execute(request.image):
 if obj[“class”] == “person”:
 persons.append(self.r1.Execute(request.image[obj[“rect”]])
 elif obj[“class”] == “car”:
 cars.append(self.r2.Execute(request.image[obj[“rect”]])
 return Reply(request.user_id, persons, cars)

33

High Efficiency

• For high request rate, high latency
SLA workload, saturate GPU
efficiency by using large batch size

34

Request rate

Latency SLA

low

high

highlow

Workload characteristic

batch size >= 32

VGG16 throughput vs batch size

GPU saturate region

High Efficiency

• Suppose we can choose a different
batch size for each op (layer), and
allocate dedicated GPUs for each
op.

35

Request rate

Latency SLA

low

high

highlow

Workload characteristic

...

op1 op2 opn

GPU

GPU

GPU

VGG16 conv2_1 (winograd) VGG16 fc6

batch size 16

Split Batching

•

36

Split Batching

37

VGG16 optimal batch size for each segment
for latency SLA 15ms

Batch size 3 for entire model

40%

13%

High Efficiency
•

38

Request rate

Latency SLA

low

high

highlow

Workload characteristic

batching

exec

exec

time

batch k

batch k+1

GPU is idle during this period

Execute multiple models on one GPU

Execute multiple models on a single GPU

39

A1 A2 A3 A4 A5

batch k

Model A requests

GPU execution A1 A2 A3 A4 A5

batch k+1

worst latency

Execute multiple models on a single GPU

40

A1 A2 A3 A4 A5

batch k

Model A requests

GPU execution A1 A2 A3 A4 A5

batch k+1

A1 A2 A3 A4 A5B1 B2 B3 B4 B5

Model A requests

GPU execution

Model B requests

A1 B1 ...

Operations of model A and B interleave

worst latency

worst latency

Next batch

A5

Execute multiple models on a single GPU

41

A1 A2 A3 B1 B2 B3 B4 B5

Model A requests

GPU execution

Model B requests

...A4 A5 A1 A2 A3 A4 A5

batch kA batch kB
batch kA+1

worst latency

Use larger batch size as latency is reduced and predictive

High Efficiency
Solution depends

• If saturate GPU in temporal domain
due to low latency: allocate
dedicated GPU(s)

• If not: can use multi-batching to
share GPU cycles with other models

42

Request rate

Latency SLA

low

high

highlow

Workload characteristic

Prefix batching for model specialization

• Specialization (long-term /
short-term) re-trains last a few
layers

43
A new model

Prefix batching for model specialization

• Specialization (long-term /
short-term) re-trains last a few
layers

• Prefix batching allows batch
execution for common prefix

44
A new model

Different suffixes
execute individually

Common prefix can be
batched together

Meet Latency SLA: Global scheduler

• First apply split batching and prefix batching if possible
• Multi-batching: bin-packing problem to pack models into GPUs
• Bin-packing optimization goal

• Minimize the resource usage (number of GPUs)

• Constraint
• Requests have to be served within latency SLA

• Degrees of freedom
• Split workloads into smaller tasks
• Change the batch size

45

Best-fit decreasing algorithms

46

Best-fit decreasing algorithms

47

Bin to fit in execution
cycles

Best-fit decreasing algorithms

48

Bin to fit in
execution
cycles

...

sort

All residue workloads

Reference
● Kim, Yong-Deok, et al. "Compression of deep convolutional neural networks for fast and low

power mobile applications." ICLR (2016).
● Song Han, et al. "Deep Compression: Compressing Deep Neural Networks with Pruning,

Trained Quantization and Huffman Coding." ICLR (2016).
● Romero, Adriana, et al. "Fitnets: Hints for thin deep nets." ICLR (2015).
● Mohammad Rastegari, et al. "XNOR-Net: ImageNet Classification Using Binary Convolutional

Neural Networks." ECCV (2016).
● Crankshaw, Daniel, et al. "Clipper: A Low-Latency Online Prediction Serving System." NSDI

(2017).

