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Deep Learning Applications

“That drink will get you to 
2800 calories for today”

“I last saw your keys in the 
store room”

“Remind Tom of the party”

“You’re on page 263 of this 
book”

Intelligent assistant Surveillance / Remote assistance Input keyboard



Model Serving Constraints
● Latency constraint

○ Batch size cannot be as large as possible when executing in the cloud
○ Can only run lightweight model in the device

● Resource constraint
○ Battery limit for the device
○ Memory limit for the device
○ Cost limit for using cloud

● Accuracy constraint
○ Some loss is acceptable by using approximate models
○ Multi-level QoS



Runtime Environment

Sensor Processor Radio Cloud
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Camera
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CPU
GPU
FPGA
ASIC

Wifi
4G / LTE
Bluetooth

CPU server
GPU server
TPU / FPGA server

streaming



Resource usage for a continuous vision app

Imager Processor Radio

Omnivision 
OV2740
90mW

Tegra K1 GPU
290GOPS@10W
= 34pJ/OP

Qualcomm SD810 LTE
>800mW
Atheros 802.11 a/g
15Mbps@700mW= 47nJ/b

Cloud

Amazon EC2
CPU   c4.large      2x400GFLOPS   $0.1/h
GPU   g2.2xlarge  2.3TFLOPS        $0.65/h

5Huge gap between workload and budget

Budget
Device power Cloud cost

30% of 10Wh for 10h = 300mW $10 person/year

Workload Deep learning 300GFLOPS @ 30GFLOPs/frame, 10fps

Compute 
power

9GFLOPS 3.5GFLOPS (GPU) / 8GFLOPS (CPU)



Outline
● Model compression

● Serving System



Model Compression
● Tensor decomposition
● Network pruning
● Quantization
● Smaller model



Matrix decomposition

* *

Fully-connected layer
● Memory reduction:
● Computation reduction:

Merge into one matrix
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Tensor decomposition
Convolutional layer
● Memory reduction: 
● Computation reduction: 

* Kim, Yong-Deok, et al. "Compression of deep convolutional neural networks for fast and low power 
mobile applications." ICLR (2016).

bounded by



Decompose the entire model



Fine-tuning after decomposition



Accuracy & Latency after Decomposition



Network pruning: Deep compression

* Song Han, et al. "Deep Compression: Compressing Deep Neural Networks with Pruning, Trained 
Quantization and Huffman Coding." ICLR (2016).



Network pruning: prune the connections



Network pruning: weight sharing
1. Use k-means clustering to 

identify the shared weights 
for each layer of a trained 
network. Minimize

2. Finetune the neural network 
using shared weights.



Network pruning: accuracy



Network pruning: accuracy vs compression



Quantization: XNOR-Net

* Mohammad Rastegari, et al. "XNOR-Net: ImageNet Classification Using Binary Convolutional Neural 
Networks." ECCV (2016).



Quantization: binary weights



Quantization: binary input and weights



Quantization: accuracy



Quantization



Quantization



Smaller model: Knowledge distillation
● Knowledge distillation: use a teacher model (large model) to train a 

student model (small model)

* Romero, Adriana, et al. "Fitnets: Hints for thin deep nets." ICLR (2015).



Smaller model: accuracy



Discussion
What are the implications of these model compression techniques for serving?

● Specialized hardware for sparse models
○ Song Han, et al. “EIE: Efficient Inference Engine on Compressed Deep Neural Network.” 

ISCA 2016

● Accuracy and resource trade-off
○ Han, Seungyeop, et al. "MCDNN: An Approximation-Based Execution Framework for Deep 

Stream Processing Under Resource Constraints." MobiSys (2016).



Serving system



Serving system
● Goals: 

○ High flexibility for writing applications
○ High efficiency on GPUs
○ Satisfy latency SLA

● Challenges
○ Provide common abstraction for different frameworks
○ Achieve high efficiency

■ Sub-second latency SLA that limits the batch size
■ Model optimization and multi-tenancy causes long tail



FrontendFrontend

Nexus: efficient neural network serving system
…requests

unit query

Frontend
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GPU

scheduler

Backend

GPU

scheduler
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Backend
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scheduler

Backend
M2

GPU

scheduler

Backend

GPU

scheduler

M4M3

Remarks
• Frontend runtime library allows 

arbitrary app logic
• Packing models to achieve 

higher utilization
• A GPU scheduler allows new 

batching primitives
• A batch-aware global scheduler 

allocates GPU cycles for each 
model

Global 
Scheduler

App 1 App 2 App 3 Control flow

Nexus Runtime
Load Balancer Dispatch Approx. lib

Application Logic



Flexibility: Application runtime
class ModelHandler:
  # return output future 
  def Execute(input)

class AppBase:
  # return ModelHandler
  def GetModelHandler(framework, model, version, latency_sla)
  # Load models during setup time, implemented by developer
  def Setup()
  # Process requests, implemented by developer
  def Process(request)
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Async RPC, execute the model remotely

Send load model request to global scheduler



Application example: Face recognition
class FaceRecApp(AppBase):
  def Setup(self):
    self.m1 = self.GetModelHandler(“caffe”, “vgg_face”, 1, 100)
    self.m2 = self.GetModelHandler(“mxnet”, “age_net”, 1, 100)

  def Process(self, request):
    ret1 = self.m1.Execute(request.image)
    ret2 = self.m2.Execute(request.image)
    return Reply(request.user_id, ret1[“name”], ret2[“age”])
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Load model from different framework

Execute concurrently on remote 
GPUs

Force to synchronize when accessing future data



Application example: Traffic Analysis
class TrafficApp(AppBase):
  def Setup(self):
    self.det = self.GetModelHandler(“darknet”, “yolo9000”, 1, 300)
    self.r1 = self.GetModelHandler(“caffe”, “vgg_face”, 1, 150)
    self.r2 = self.GetModelHandler(“caffe”,“googlenet_car”, 1, 150)

  def Process(self, request):
    persons, cars = [], []
    for obj in self.det.Execute(request.image):
      if obj[“class”] == “person”:
        persons.append(self.r1.Execute(request.image[obj[“rect”]])
      elif obj[“class”] == “car”:
        cars.append(self.r2.Execute(request.image[obj[“rect”]])
    return Reply(request.user_id, persons, cars)
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High Efficiency

• For high request rate, high latency 
SLA workload, saturate GPU 
efficiency by using large batch size
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Request rate

Latency SLA

low

high

highlow

Workload characteristic

batch size >= 32

VGG16 throughput vs batch size

GPU saturate region



High Efficiency

• Suppose we can choose a different 
batch size for each op (layer), and 
allocate dedicated GPUs for each 
op.
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Request rate

Latency SLA

low

high

highlow

Workload characteristic

...

op1 op2 opn

GPU

GPU

GPU

VGG16 conv2_1 (winograd) VGG16 fc6

batch size 16



Split Batching

•  
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Split Batching
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VGG16 optimal batch size for each segment 
for latency SLA 15ms

Batch size 3 for entire model

40%

13%



High Efficiency
•  
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Request rate

Latency SLA

low

high

highlow

Workload characteristic

batching

exec

exec

time

batch k

batch k+1

 

GPU is idle during this period

Execute multiple models on one GPU



Execute multiple models on a single GPU
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A1 A2 A3 A4 A5

batch k

Model A requests

GPU execution A1 A2 A3 A4 A5

batch k+1

worst latency



Execute multiple models on a single GPU
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A1 A2 A3 A4 A5

batch k

Model A requests

GPU execution A1 A2 A3 A4 A5

batch k+1

A1 A2 A3 A4 A5B1 B2 B3 B4 B5

Model A requests

GPU execution

Model B requests

A1 B1 ...

Operations of model A and B interleave

worst latency

worst latency

Next batch

A5



Execute multiple models on a single GPU
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A1 A2 A3 B1 B2 B3 B4 B5

Model A requests

GPU execution

Model B requests

...A4 A5 A1 A2 A3 A4 A5

batch kA batch kB
batch kA+1

worst latency

Use larger batch size as latency is reduced and predictive



High Efficiency
Solution depends

• If saturate GPU in temporal domain 
due to low latency: allocate 
dedicated GPU(s)

• If not: can use multi-batching to 
share GPU cycles with other models

42

Request rate

Latency SLA

low

high

highlow

Workload characteristic



Prefix batching for model specialization

• Specialization (long-term / 
short-term) re-trains last a few 
layers

43
A new model



Prefix batching for model specialization

• Specialization (long-term / 
short-term) re-trains last a few 
layers

• Prefix batching allows batch 
execution for common prefix
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A new model

Different suffixes 
execute individually

Common prefix can be 
batched together



Meet Latency SLA: Global scheduler

• First apply split batching and prefix batching if possible
• Multi-batching: bin-packing problem to pack models into GPUs
• Bin-packing optimization goal

• Minimize the resource usage (number of GPUs) 

• Constraint
• Requests have to be served within latency SLA

• Degrees of freedom
• Split workloads into smaller tasks
• Change the batch size
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Best-fit decreasing algorithms
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Best-fit decreasing algorithms
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Bin to fit in execution 
cycles

 

 



Best-fit decreasing algorithms
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Bin to fit in 
execution 
cycles

...

sort

All residue workloads 
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