Lecture 16: Domain Specific Language and IR

CSE599G1: Spring 2017
Where are we

User API
- Programming API
- Gradient Calculation (Differentiation API)

System Components
- Computational Graph Optimization and Execution
- Runtime Parallel Scheduling

Architecture
- GPU Kernels, Optimizing Device Code
- Accelerators and Hardwares
Where are we

Programming API

Gradient Calculation (Differentiation API)

Computational Graph Optimization and Execution

Runtime Parallel Scheduling / Networks

Gap between computation graph and hardware

GPU Kernels, Optimizing Device Code

Accelerators and Hardwares
Question

\[w = w - lr \times \text{grad} \]
Operator Fusion

Computation

Sequential Kernel Execution

Fused Kernel Execution

for (int i = 0; i < n; ++i) {
 temp1[i] = lr * grad[i]
}
for (int i = 0; i < n; ++i) {
 temp2[i] = w[i] - temp1[i]
}
for (int i = 0; i < n; ++i) {
 w[i] = temp2[i]
}

for (int i = 0; i < n; ++i) {
 w[i] = w[i] - lr * grad[i]
}
More Backends

Computation

- assign
- sub
- mul

learning_rate

OpenCL (Arm devices)

```c
__kernel void update(__global float *w,
                     __global float* grad,
                     int n) {
    int gid = get_global_id(0)
    if (gid < n) {
        w[gid] = w[gid] - lr * grad[gid];
    }
}
```

Metal (iOS devices)

```c
kernel void update(float *w [[buffer(0)],
                     float* grad [[buffer(1)]],
                     uint gid [[thread_position_in_grid]]
                     int n) {
    if (gid < n) {
        w[gid] = w[gid] - lr * grad[gid];
    }
}
```
Computation and Data Layout

Vanilla Matrix Multiplication

```c
float A[n][h], W[n][h], C[n][m];

for (int i = 0; i < n; ++i)
    for (int j = 0; j < m; ++j) {
        C[i][j] = 0;
        for (int k = 0; k < h; ++k) {
            C[i][j] += A[i][k] * W[j][k];
        }
    }
```

Challenge: Computation and Data Layout

Data Packing

\[A[i][j] \rightarrow A[i/4][j/4][i\%4][j\%4] \]

Code

```c
float A[n/4][h/4][4][4];
float W[n/4][h/4][4][4];
float C[n/4][m/4][4][4];
for (int i = 0; i < n/4; ++i)
  for (int j = 0; j < m/4; ++j) {
    C[i][j] = 0;
    for (int k = 0; k < h/4; ++k) {
      C[i][j] += dot(A[i][k], W[j][k]);
    }
  }
```
Bridge Layer for Code Generation

Also called domain specific language
Expression Template: Linear Algebra AST in C++
Expression Template:

- Expression returns AST
- Lazy evaluate the expression at assignment
- Generate one kernel per evaluation during compilation

```c
float data_a[n] = {1, 2, 3};
float data_b[n] = {2, 3, 4};
float data_c[n] = {3, 4, 5};
float lr = 0.1;
Vec A(sa, n), B(sb, n), C(sc, n);

// run expression
A = B + C * lr;
```
Device Invariant Code via Templatization

```cpp
template<typename xpu>
void UpdateSGD(Tensor<xpu, 2> weight,
               const Tensor<xpu, 2> &grad,
               float eta, float lambda) {
    weight -= eta * (grad + lambda * weight);
}
```
Expression Template in DL Frameworks

 - Used in TensorFlow
- mshadow: https://github.com/dmlc/mshadow
 - Used in MXNet

- Tutorial on how it works

- Discussion: what are the drawbacks of expression template
Computational Graph level IR
Computation Graph as IR

- Benefit from high level view
- Need code generation/interpretation rule for each op
Codegen Rule for Elementwise Op

extern "C" __global__ fusion_kernel (uint32_t num_element,
 float *x0, float *x1, float *x2, float *y) {
 int global_idx = blockIdx.x * blockDim.x + threadIdx.x;
 if (global_idx < num_element)
 y[global_idx] = (x0[global_idx] * x1[global_idx]) + x2[global_idx];
}
Nvidia TensorRT: Rule based Fusion

Source: Nvidia
XLA: Tensorflow Compiler Stack

- Constant shape dimension
- Data layout is specific
- Operations are low level tensor primitives
 - Map
 - Broadcast
 - Reduce
 - Convolution
 - ReduceWindow
 - ...

Diagram:

```
XLA Backend

Target-specific Code Generation

Target-dependent Optimizations & Analyses

XLA HLO

Target-independent Optimizations & Analyses

XLA HLO
```

PAUL G. ALLEN SCHOOL OF COMPUTER SCIENCE & ENGINEERING
Array Index based DSL
Index based Computation Description

Description of $C = A + B$

$n = t.var('n')$
$m = t.var('m')$
$A = t.placeholder((m, n), name='A')$
$B = t.placeholder((m, n), name='B')$
$C = t.compute((m, n), \text{lambda } i, j: A[i, j] + B[i, j])$

Computation Rule for index i, j
Computation Description for Matrix Multiplication

Description of $C = \text{dot}(A, B.T)$

$A = t\.\text{placeholder}((l, n), \text{name}=\text{'A'})$
$B = t\.\text{placeholder}((l, m), \text{name}=\text{'B'})$
$k = t\.\text{reduce_axis}((\emptyset, 1), \text{name}=\text{'k'})$
$C = t\.\text{compute}((m, n),$

 $\text{lambda} \ i, j: t\.\text{sum}(A[k, j] * B[k, i], \text{axis}=k));$
Loop Transformation Rule

```python
C = t.compute((m, n), lambda i, j: A[i, j] + B[i, j])
s = t.create_schedule(C.op)

for (int i = 0; i < n; ++i) {
    C[i] = A[i] + B[i];
}
```
Loop Transformation Rule

```python
C = t.compute((m, n), lambda i, j: A[i, j] + B[i, j])
s = t.create_schedule(C.op)
bx, tx = s[C].split(C.op.axis[0], factor=64)

for (int bx = 0; bx < ceil(n / 64); ++bx) {
    for (int tx = 0; tx < 64; ++tx) {
        int i = bx * 64 + tx;
        if (i < n) {
            C[i] = A[i] + B[i];
        }
    }
}
```
Loop Transformation Rule

C = t.compute((m, n), lambda i, j: A[i, j] + B[i, j])
s = t.create_schedule(C.op)
bx, tx = s[C].split(C.op.axis[0], factor=64)
s[C].bind(bx, tvm.thread_axis("blockIdx.x"))
s[C].bind(tx, tvm.thread_axis("threadIdx.x"))

int i = blockIdx.x * 64 + threadIdx.x;
if (i < n) {
 C[i] = A[i] + B[i];
}
Key Characteristics of Array Index based DSLs

● Index based description

● Loop transformation rules to generate different programs
Summary: Challenges for IR

- Simple description language for computation
- Rich transformation for computation patterns
- Keep up with emerging hardware
- It is still an open question!