Challenges in Applied DL

Yangqing Jia
Facebook
Rich feature hierarchies for accurate object detection and semantic segmentation

Implement it!
The Needs

Two sides of the same coin

- Researchers
 "I need to design flexible ML algorithms."
 "I need to reproduce that ResNet paper."

- Companies
 "Hey, I need to apply DL to my applications."
Industry:
- Stability
- Scale & speed
- Data Integration
- Relatively Fixed

Research:
- Flexible
- Fast Iteration
- Debuggable
- Relatively barbone
Industry:
- Stability
- Scale & speed
- Data Integration
- Relatively Fixed

Research:
- Flexible
- Fast Iteration
- Debuggable
- Relatively barebone
Things that Matters
Finding better model architecture
Numerical optimization
Model Compression
AlexNet

So it begins.
VGGNet

Punch it.

<- AlexNet
GoogLeNet
We must go deeper.
ResNet
And we took the word seriously
ResNet

And we took the word seriously
We totally see it coming
Practical Model Selections

- Go deeper & go structured
- No need to go very large layers
 - It only takes 8-16 channels for style transfer
- Model depth matters
 - (almost) never need to do more than 3x3 filters
- Conscious model search for performance balances
 - but, with “grad student decay”
Numeric Optimizations

GEMM/Conv is usually at the core of CNNs
The Conv Math

Image: \(C \times H \times W \)

Feature Matrix: \((H \times W) \times (C \times K \times K) \)

Filters: \(C_{out} \times C \times K \times K \)

Filter Matrix: \(C_{out} \times (C \times K \times K) \)
The Conv Math - Winograd

\[
\begin{align*}
\text{Layer} & \quad \text{im2col} & \quad \text{Winograd} \\
\text{AlexNet:conv2} & \quad 315 & \quad 86 \\
\text{AlexNet:conv3} & \quad 182 & \quad 44 \\
\text{AlexNet:conv4} & \quad 264 & \quad 56 \\
\text{AlexNet:conv5} & \quad 177 & \quad 40 \\
\end{align*}
\]

(with NNPACK)

Source: https://www.nervanasys.com/winograd-2/, https://github.com/Maratyszcza/NNPACK
Model Compression

Original Artwork
- Train Connectivity
 - Prune Connections
 - Train Weights

Pruning
- Train Connectivity
- Prune Connections
- Train Weights

Quantization
- Cluster Weights
 - Generate Code Book
 - Quantize Weights
 - Retrain Code Book

Huffman Encoding
- Encode Weights
 - Encode Index

Same Accuracy
- 50x Reduction
Food for Thought
The Return of Jedi MPI

- MPI is actually a very good abstraction for ML
- Especially from a sync SGD perspective
- Most existing training algorithms adopt an MPI-like fashion
The Return of Jedi MPI
Gloo

MPI like library without the trouble of MPI

Pieter Noordhuis
(Also creator of hiredis)

Source: https://github.com/facebookincubator/gloo
• We are running an interpreter these days.
Interpreters are good and bad

- They allow easy, imperative computations
- But, they miss a lot of optimization opportunities
 - Inlining computation of multiple operators
 - Optimizing away common expressions
 - Memory optimizations
Compiler Usage #1

Graph parsing & rewriting

Diagram showing graph parsing & rewriting with nodes labeled Conv2D, BiasAdd, Relu, DepthConcat, etc., leading to an Inception node.
Compiler Usage #2
Memory optimizations

Compiler Usage #3

Code generator

- Current sparsification do NOT bring performance boosts
 - The uncanny valley of “semi-sparse”
- Model **and** parameters are “frozen” once trained
 - Generate code based on such frozen models
An overly simplified example

naive
for i in 0..3
 for j in 0..3
 apply(i, j, f(i, j))

zero aware
but not efficient
for i in 0..3
 for j in 0..3
 if (f(i, j))
 apply(i, j, f(i, j))

zero aware
autogenerated code
apply(0, 1, 0.2)
apply(0, 2, 0.5)
apply(1, 0, 0.1)
apply(1, 1, 0.9)
apply(2, 1, 0.4)
A working example: sgemm_pack

How to use the Computer science conventional wisdom to do better machine learning?
Thank you!

Yangqing Jia, jiayq@eecs.berkeley.edu