
Lecture 9: Memory Optimization

CSE599W: Spring 2018

Where are we

Gradient Calculation (Differentiation API)

Computational Graph Optimization and Execution

Runtime Parallel Scheduling

GPU Kernels, Optimizing Device Code

Programming API

Accelerators and Hardwares

User API

System
Components

Architecture

High level Packages

Where are we

Gradient Calculation (Differentiation API)

Computational Graph Optimization and Execution

Runtime Parallel Scheduling

Programming API

GPU Kernels, Optimizing Device Code

Accelerators and Hardwares

Recap: Computation Graph

W

x

matmult softmax log

y_

mul mean

log-gradsoftmax-grad mul 1 / batch_size
matmult-
transpose

W_grad
mul

learning_rate

sub

assign y cross_entropy

Recap: Automatic Differentiation

W

x

matmult softmax log

y_

mul mean

log-gradsoftmax-grad mul 1 / batch_size
matmult-
transpose

y cross_entropy

W

x

matmult softmax log mul mean
cross_entropy

Backprop in Graph

Autodiff by Extending the Graph: assignment 1

Questions for this Lecture

W

x

matmult softmax log

y_

mul mean

log-gradsoftmax-grad mul 1 / batch_size
matmult-
transpose

y cross_entropy

Why do we need automatic differentiation that extends the
graph instead of backprop in graph?

Memory Problem of Deep Nets

LeNet

Inception

Deep nets are becoming deeper

State-of-Art Models can be Resource Bound

● Examples of recent state of art neural nets
○ Convnet: ResNet-1k on CIFAR-10, ResNet-200 on ImageNet
○ Recurrent models: LSTM on long sequences like speech

● The maximum size of the model we can try is bounded by total RAM
available of a Titan X card (12G)

We need to be frugal

Q: How to build an Executor for a Given Graph

a

b

mul add-const

3

exp

Computational Graph for exp(a * b + 3)

Build an Executor for a Given Graph

1. Allocate temp memory for intermediate computation

Same color represent same
piece of memory

a

b

mul add-const

3

exp

Computational Graph for exp(a * b + 3)

4

8

Build an Executor for a Given Graph

a

b

mul add-const

3

exp

32 35 exp(32)

Computational Graph for exp(a * b + 3)

1. Allocate temp memory for intermediate computation

2. Traverse and execute the graph by topo order.

4

8

Build an Executor for a Given Graph

a

b

mul add-const

3

exp

32 35 exp(32)

Computational Graph for exp(a * b + 3)

1. Allocate temp memory for intermediate computation

2. Traverse and execute the graph by topo order.

4

8

Temporary space linear
to number of ops

Dynamic Memory Allocation

a

b

mul add-const

3

exp

324

8

Memory Pool

1. Allocate when needed

2. Recycle when a memory is not needed.

3. Useful for both declarative and imperative executions

Dynamic Memory Allocation

a

b

mul add-const

3

exp

354

8

Memory Pool

1. Allocate when needed

2. Recycle when a memory is not needed.

3. Useful for both declarative and imperative executions

Dynamic Memory Allocation
1. Allocate when needed

2. Recycle when a memory is not needed.

3. Useful for both declarative and imperative executions

a

b

mul add-const

3

exp

exp(35)354

8

Memory Pool

Static Memory Planning
1. Plan for reuse ahead of time

2. Analog: register allocation algorithm in compiler

a

b

mul add-const

3

exp

4

8

Same color represent same
piece of memory

Common Patterns of Memory Planning

● Inplace store the result in the input

● Normal Sharing reuse memory that are no longer needed.

Inplace Optimization

a

b

mul add-const exp

Computational Graph for exp(a * b + 3)

3

● Store the result in the input
● Works if we only care about the final result

● Question: what operation cannot be done inplace ?

Inplace Pitfalls

a

b

mul add-const

exp

3

log

We can only do inplace if result op is the only consumer
of the current value

Normal Memory Sharing

a

b

mul add-const

exp

3

log

Recycle memory that is no longer needed.

Memory Planning Algorithm

A

B = sigmoid(A)

C = sigmoid(B)

E = Pooling(C)

F = Pooling(B)

G = E * F

2

1

1

1

1

2

1

1

1

1

1

1

1

1

1

0

1

1

1

1

0

0

1

1

1

0

0 0

1

step 1: Allocate
tag for B

step 2: Allocate tag
for C, cannot do
inplace because B
is still alive

step 3: Allocate tag
for F, release space
of B

step 4: Reuse the
tag in the box for E

0

step 5: Re-use tag of E,
This is an inplace
optimization

internal arrays, same color indicates shared
memory.

data dependency, operation completed

Initial state of
allocation algorithm

Final Memory Plan
Tag used to indicate memory sharing
on allocation Algorithm.

count ref counter on dependent operations
that yet to be full-filled

data dependency, operation not completed

Box of free tags in allocation
algorithm.

Concurrency vs Memory Optimization

A[1]

A[2] = conv(A[1])

A[3]=pool(A[2])

A[4]=conv(A[3])

A[5] = pool(A[1])

A[6]=conv(A[5])

A[7]=pool(A[6])

A[8] = concat(A[4], A[7])

A[1]

A[2] = conv(A[1])

A[3]=pool(A[2])

A[4]=conv(A[3])

A[5] = pool(A[1])

A[6]=conv(A[5])

A[7]=pool(A[6])

A[8] = concat(A[4], A[7])

internal arrays data dependency

Memory allocation for result, same
color indicates shared memory.

implicit dependency introduced due to allocation

Cannot Run in Parallel Enables two Parallel Path

Concurrency aware Heuristics

1

1

1

1

1
1

1

1

1

1

0

0

0

0

0
0

0

1

1

1

First the
Longest Path

Reset the Reward of
visited Node to 0. Find
the next longest Path

The final node Color

Restrict memory reuse in the same colored path

Memory Allocation and Scheduling

Introduces implicit control flow
dependencies between ops

Solutions:
● Explicitly add the control flow dependencies

○ Needed in TensorFlow
● Enable mutation in the scheduler, no extra job needed

○ Both operation “mutate” the same memory
○ Supported in MXNet

A[1]

A[2] = conv(A[1])

A[3] = pool(A[2])

A[4] = conv(A[3])

A[5] = pool(A[1])

A[6] = conv(A[5])

A[7] = pool(A[6])

A[8] = concat(A[4], A[7])

Memory Plan with Gradient Calculation

a

b

mul add-const

3

exp

mul
out_grad

mul
a_grad

Back to the Question: Why do we need automatic differentiation
that extends the graph instead of backprop in graph?

Memory Plan with Gradient Calculation

a

b

mul add-const

3

exp

mul
out_grad

mul
a_grad

Back to the Question: Why do we need automatic differentiation
that extends the graph instead of backprop in graph?

Memory Optimization on a Two Layer MLP

Impact of Memory Optimization in MXNet

We are still Starved

● For training, cost is still linear to the number of layers
● Need to book-keep results for the gradient calculation

Trade Computation with Memory

Forward

Backward1

Backward2

Data to be checkpointed for backprop

Data to be dropped

● Only store a few of the intermediate result
● Recompute the value needed during gradient calculation

Computation Graph View of the Algorithm

Sublinear Memory Complexity
● If we check point every K steps on a N layer network

● The memory cost = O(K) + O(N/K)

● We can get sqrt(N) memory cost plan

● With one additional forward pass(25% overhead)

Cost per segment Cost to store results

Alternative View: Recursion

More memory can be saved by multiple level of recursion

Comparison of Allocation Algorithm on ResNet

Chen et.al 2016

Comparison of Allocation Algorithm on LSTM

Chen et.al 2016

Execution Overhead

Take-aways

● Computation graph is a useful tool for tracking dependencies

● Memory allocation affects concurrency

● We can trade computation for memory to get sublinear memory plan

Assignment 2

● Assignment 1 implements computation graph and autodiff
● Assignment 2 implements the rest of DL system stack (Graph Executor) to

run on hardware
○ Shape Inference
○ Memory management
○ TVM-based operator implementation

● Deadline in two weeks: 5/8/2018
● Post questions to #dlsys slack channel so course staff can help

