Lecture 9: Memory Optimization

CSES99W: Spring 2018



Where are we

[ High level Packages ]
User API Programming API
. | Gradient Calculation (Differentiation API)
System Computational Graph Optimization and Execution
Components | . i
Runtime Parallel Scheduling
Architecture | | GPU Kernels, Optimizing Device Code
Accelerators and Hardwares I
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Where are we

|:> ' | Computational Graph Optimization and Execution
- | Runtime Parallel Scheduling
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Recap: Computation Graph

cross_entropy

y
matmult softmax
ub
( W_grad matmult-

mul e softmax-grad }*{ log-grad

1 / batch_size

learning_rate
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Recap: Automatic Differentiation

Backprop in Graph

“ - -— — -— cross_entropy

matmult H softmax log mul m

Autodiff by Extending the Graph: assighment 1

y cross_entropy

matmult softmax

_____________________________________________________________________________________________________

matmult- [ ]“[ .
[ transpose softmax-grad log-grad H mul i<—— 1 / batch_size
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Questions for this Lecture

Why do we need automatic differentiation that extends the
graph instead of backprop in graph?

y cross_entropy

matmult softmax

_____________________________________________________________________________________________________

matmult- [ ]“[ ’
[ transpose softmax-grad log-grad H mul i<—— 1 / batch_size
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Memory Problem of Deep Nets

Deep nets are becoming deeper

LeNet

dinoxeunjos

VZXVZXO!

Inception m ;,
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State-of-Art Models can be Resource Bound

e Examples of recent state of art neural nets
o Convnet: ResNet-1k on CIFAR-10, ResNet-200 on ImageNet
o Recurrent models: LSTM on long sequences like speech

e The maximum size of the model we can try is bounded by total RAM
available of a Titan X card (12G)

We need to be frugal
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Q: How to build an Executor for a Given Graph

Computational Graph for exp(a * b + 3)

mul 7 add-const ]—’[ exp ]
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Build an Executor for a Given Graph

1. Allocate temp memory for intermediate computation

Computational Graph for exp(a * b + 3)

Same color represent same 4 2 | ) ) )
piece of memory . mul [ add-const |——( exp |

3
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Build an Executor for a Given Graph

1. Allocate temp memory for intermediate computation

2. Traverse and execute the graph by topo order.
Computational Graph for exp(a * b + 3)

4 35 ] [ expB32) |
:>m73dd*°"st]—’[ 0 |
8

3

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING



Build an Executor for a Given Graph

1. Allocate temp memory for intermediate computation

2. Traverse and execute the graph by topo order.
Computational Graph for exp(a * b + 3)

4 35 ] [ expB32) |
add'““st]—’[ 0 |
8

3

Temporary space linear
to number of ops
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Dynamic Memory Allocation

1. Allocate when needed
2. Recycle when a memory is not needed.

3. Useful for both declarative and imperative executions

Memory Pool

mul add-const ]—’[ exp
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Dynamic Memory Allocation
1. Allocate when needed
2. Recycle when a memory is not needed.

3. Useful for both declarative and imperative executions

Memory Pool

] (35 ]

4
mul add-const ]—’[ exp

8
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Dynamic Memory Allocation

1. Allocate when needed
2. Recycle when a memory is not needed.

3. Useful for both declarative and imperative executions

Memory Pool

4 (35 )
mul add-const ]—’[ exp ]
8
3
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Static Memory Planning

1. Plan for reuse ahead of time

2. Analog: register allocation algorithm in compiler

Same color represent same 4 [ 2 | N
piece of memory . mu [ add-const |——( exp |

3
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Common Patterns of Memory Planning

e Inplace store the result in the input

e Normal Sharing reuse memory that are no longer needed.
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Inplace Optimization

e Store the resultin the input
e Works if we only care about the final result

e Question: what operation cannot be done inplace ?

Computational Graph for exp(a * b + 3)

3 -3 ]
mul y add-const J—'[ exp J
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Inplace Pitfalls

We can only do inplace if result op is the only consumer
of the current value

)

mul add-const
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Normal Memory Sharing

Recycle memory that is no longer needed.

]

mul add-const
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Memory Planning Algorithm

A
1)
- z o
o 2
B = sigmoid(A) E.le N T~
i "~~~y F = Pooling(B) | “ t' P Ju
1 1 o 1 ! 1
C = sigmoid(B) E*F'l :.Il E:*:'l ! 1 é’- : é_._ :1 0 :1
1 ____ﬁ ____ﬁ
E = Pooling(C) Er--——ﬁ, - ----n = =
ooling L GoE*F 1 1 1 1 1 1 1 1

Initial state of

allocation algorithm

step 1: Allocate

tag for B

step 2: Allocate tag
for C, cannot do
inplace because B

step 3: Allocate tag
for F, release space
of B

step 4: Reuse the
tag in the box for E

step 5: Re-use tag of E,
This is an inplace
optimization

is still alive

Final Memory Plan

[  internal arrays, same color indicates shared Tag used to indicate memory sharing

7 : :
mermory. . on allocation Algorithm.
count re ¢ounter on dependent operations &

that yet to be fullfilled Box of free tags in allocation

—— data dependency, operation completed algorithm.

----» data dependency, operation not completed
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Concurrency vs Memory Optimization

Cannot Run in Parallel

A Al

A[2] = conv(A[1]) f7oiiiin [1 A[5] = pool(A[1])

A[3]=pool(A[2])

A[4]=conv(A[3])

A[8] = concat(A[4], A[7])

B internal arrays

»  Memory allocation for result, same
color indicates shared memory.
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Enables two Parallel Path

A Al1]
]

A[2] = conv(A[1]) ] [1 A[5] = pool(A[1])

A[3]=pool(A[2]) L A[6]=conv(A[5])

A[4]=conv(A[3]) A[7]=pool(A[6])

A[8] = concat(A[4], A[7])

—~ data dependency

~ implicit dependency introduced due to allocation



Concurrency aware Heuristics

1 1
1
1
1
1 1
1
First the Reset the Reward of The final node Color
Longest Path visited Node to 0. Find

the next longest Path

Restrict memory reuse in the same colored path
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Memory Allocation and Scheduling

Introduces implicit control flow

/ dependencies between ops

A[2] = conv(A[1]) ] A[5] = pool(A[1])

A[3] = pool(A[2])

A[4] = conv(A[3])

A[8] = concat(A[4], A[7])
Solutions:
e Explicitly add the control flow dependencies
o Needed in TensorFlow
e Enable mutation in the scheduler, no extra job needed
o Both operation “mutate” the same memory
o Supported in MXNet
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Memory Plan with Gradient Calculation

Back to the Question: Why do we need automatic differentiation
that extends the graph instead of backprop in graph?

o S s s |
mul 7 add-const ]—*[ exp ]

b

d d
a_‘_igr‘a mul_1 [ mul ]gt_gr‘a
) [ )
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Memory Plan with Gradient Calculation

Back to the Question: Why do we need automatic differentiation
that extends the graph instead of backprop in graph?

o S s s |
mul 7 add-const ]—*[ exp ]

b

d d
a_‘_igr‘a mul_1 [ mul ]gt_gr‘a
) [ )
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Memory Optimization on a Two Layer MLP

Network Configuration Gradient Calculation Graph A Possible Allocation Plan
input input input-grad input input-grad
inplace r’r;‘err?ory
operation e
; fullc-forward N -
fullc-forward ulic-forwar fullc-backward \ fullc-forward fullc-backward H
X 1
sigmoid-forward sigmoid-forward sigmoid-backward sigmoid-forward sigmoid-backward /
!
!
fullc-forward fulle-forward fullc-backward fulle-forward fullc-backward ,’I

U
softmax-forward softmax-forward

softmax-backward softmax-forward soliresclacionss d'
log-loss label log-loss label
—— data dependency [] Memory allocation for each output of op, same

color indicates shared memory.
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Impact of Memory Optimization in MXNet

8 - | Il naive

inplace

co-share

6 | | MMinplace & co-share

i

| I
0 e |

alexnet googlenet
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We are still Starved

e For training, cost is still linear to the number of layers
e Need to book-keep results for the gradient calculation

Network Configuration Gradient Calculation Graph A Possible Allocation Plan
input input input-grad . g
p put-g inplacg input input-grad 2;3223
operation e
fullc-forward fullc-forward fillebackward \\\\ A T - l:'
sigmeld:forward sigmoid-forward sigmoid-backward sig;:'loid-forward sigmoid-backward /’I
i
fullc-forward fullc-forward fullc-backward R — — ,’/
softmax-forward softmax-forward softmax-backward softmax-forward softmax-backwar d'/
log-loss [} label log-loss label
—— data dependency [] Memory allocation for each output of op, same

color indicates shared memory.

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING



Trade Computation with Memory

e Only store a few of the intermediate result
e Recompute the value needed during gradient calculation
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PN N PN
Forward (") @ ) @

Backward1 O O Q C
Backward?2 O Q @

O Data to be checkpointed for backprop

O
O

)
O

| =

Q Data to be dropped



Computation Graph View of the Algorithm

Network Normal Memory Optimized
Configuration Gradient Graph Gradient Graph
it input input-grad input input-grad

conv-forward conv-backward - cony-forward [ ] || conv-backward

conv-forward

bn-forward bn-forward bn-backward bn-forward bn-backward
RSl saR relu-forward relu-backward  relu-forward relu-backward
conv-forward conv-forward conv-backward conv-forward votiv-backiard
bn-forward Bl O bn-backward bn-forward bn-backward
relu-forward relu-forward relu-backward  relu-forward relu-backward
—— data dependency ----* control dependency [1 Memory allocation for each output of op, same

color indicates shared memory.
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Sublinear Memory Complexity

e If we check point every K steps on a N layer network
e The memory cost = O(K) + O(N/K)

_— S

Cost per segment Cost to store results

e We can get sqrt(N) memory cost plan

e With one additional forward pass(25% overhead)
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Alternative View: Recursion

: input |
input input-grad : :
1 1
: bn-backward :
| :
_______ I !
S : relu-backward !
onv-bn-relu I
- - I I
conv-bn-relu backward ' conv-backward !
forward | |
L . |
conv-bn-relu
conv-bn-relu 4 baskoard
forward
—» data dependency [] Memory allocation for each output of op,

same color indicates shared memory.

More memory can be saved by multiple level of recursion
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Comparison of Allocation Algorithm on ResNet

Intermediate feature map memory cost (GB)

N
w
(=2}

-
N
o0

[=2]
e

w
N

-
L))

no optimization _, . -

~ @ drop bn, relu

~ sublinear plan

inplace

256 512
Number of layers

128 1024

(a) Feature map memory cost estimation
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16

GPU memory cost (GB)
sy

sharing(total)

sharing(feature map cost)

sublinear plan(total)

" sublinear plan(feature map cost)

256 512
Number of layers

128

(b) Runtime total memory cost

1024

Chen et.al 2016



Comparison of Allocation Algorithm on LSTM

__ 512 . : 16
o 256! 2 . sharing(total)
= no optimization st
S 128 — 8
> S
S 64 inplace o <
£ © a4l - sharing(feature map cost) |
g 32 4
e 14 S
a I
£ s 2t ]
I &
2 g it
R . £ B
2 sublinear plan & s
]
T b
QEJ 0.5¢ o sublinear plan(feature map cost) ]
3 05 :
E 0 25 i " i i " " "
02564128 256 512 1024 2048 ' 64 128 256 512 1024 2048
Number of unrolling steps Number of unrolling steps
(a) Feature map memory cost estimation (b) Runtime total memory cost
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Execution Overhead

16 - 32
16
8.

v 1 v

& sublinear;plan 5 8 sublinear plan

4 4

@ @ 4

@ @

Q. a

g | g 2 '\

o (&)

o o ;

E . E 1 sharing

= =

1 sharing 1
0.5
0.5 0.25 3 .
128 256 512 1024 64 128 256 512 1024 2048
Number of layers Number of unrolling steps
(a) ResNet (b) LSTM
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Take-aways

e Computation graph is a useful tool for tracking dependencies
e Memory allocation affects concurrency

e \We can trade computation for memory to get sublinear memory plan
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Assignment 2

e Assignment 1 implements computation graph and autodiff
e Assignment 2 implements the rest of DL system stack (Graph Executor) to

run on hardware

o Shape Inference
o Memory management
o TVM-based operator implementation

e Deadline in two weeks: 5/8/2018
e Post questions to #dIsys slack channel so course staff can help
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