Lecture 9: Memory Optimization

CSES99W: Spring 2018

Where are we

[High level Packages]
User API Programming API
. | Gradient Calculation (Differentiation API)
System Computational Graph Optimization and Execution
Components | . i
Runtime Parallel Scheduling
Architecture | | GPU Kernels, Optimizing Device Code
Accelerators and Hardwares I
PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Where are we

|:> ' | Computational Graph Optimization and Execution
- | Runtime Parallel Scheduling

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Recap: Computation Graph

cross_entropy

y
matmult softmax
ub
(W_grad matmult-

mul e softmax-grad }*{ log-grad

1 / batch_size

learning_rate

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Recap: Automatic Differentiation

Backprop in Graph

“ - -— — -— cross_entropy

matmult H softmax log mul m

Autodiff by Extending the Graph: assighment 1

y cross_entropy

matmult softmax

matmult- []“[.
[transpose softmax-grad log-grad H mul i<—— 1 / batch_size

PAUL G ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Questions for this Lecture

Why do we need automatic differentiation that extends the
graph instead of backprop in graph?

y cross_entropy

matmult softmax

matmult- []“[’
[transpose softmax-grad log-grad H mul i<—— 1 / batch_size

PAUL G ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Memory Problem of Deep Nets

Deep nets are becoming deeper

LeNet

dinoxeunjos

VZXVZXO!

Inception m ;,

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

State-of-Art Models can be Resource Bound

e Examples of recent state of art neural nets
o Convnet: ResNet-1k on CIFAR-10, ResNet-200 on ImageNet
o Recurrent models: LSTM on long sequences like speech

e The maximum size of the model we can try is bounded by total RAM
available of a Titan X card (12G)

We need to be frugal

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Q: How to build an Executor for a Given Graph

Computational Graph for exp(a * b + 3)

mul 7 add-const]—’[exp]

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Build an Executor for a Given Graph

1. Allocate temp memory for intermediate computation

Computational Graph for exp(a * b + 3)

Same color represent same 4 2 |)))
piece of memory . mul [add-const |——(exp |

3

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Build an Executor for a Given Graph

1. Allocate temp memory for intermediate computation

2. Traverse and execute the graph by topo order.
Computational Graph for exp(a * b + 3)

4 35] [expB32) |
:>m73dd*°"st]—’[0 |
8

3

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Build an Executor for a Given Graph

1. Allocate temp memory for intermediate computation

2. Traverse and execute the graph by topo order.
Computational Graph for exp(a * b + 3)

4 35] [expB32) |
add'““st]—’[0 |
8

3

Temporary space linear
to number of ops

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Dynamic Memory Allocation

1. Allocate when needed
2. Recycle when a memory is not needed.

3. Useful for both declarative and imperative executions

Memory Pool

mul add-const]—’[exp

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Dynamic Memory Allocation
1. Allocate when needed
2. Recycle when a memory is not needed.

3. Useful for both declarative and imperative executions

Memory Pool

] (35]

4
mul add-const]—’[exp

8

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Dynamic Memory Allocation

1. Allocate when needed
2. Recycle when a memory is not needed.

3. Useful for both declarative and imperative executions

Memory Pool

4 (35)
mul add-const]—’[exp]
8
3

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Static Memory Planning

1. Plan for reuse ahead of time

2. Analog: register allocation algorithm in compiler

Same color represent same 4 [2 | N
piece of memory . mu [add-const |——(exp |

3
PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Common Patterns of Memory Planning

e Inplace store the result in the input

e Normal Sharing reuse memory that are no longer needed.

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Inplace Optimization

e Store the resultin the input
e Works if we only care about the final result

e Question: what operation cannot be done inplace ?

Computational Graph for exp(a * b + 3)

3 -3]
mul y add-const J—'[exp J

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Inplace Pitfalls

We can only do inplace if result op is the only consumer
of the current value

)

mul add-const

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Normal Memory Sharing

Recycle memory that is no longer needed.

]

mul add-const

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

log

H

exp

~—

Memory Planning Algorithm

A
1)
- z o
o 2
B = sigmoid(A) E.le N T~
i "~~~y F = Pooling(B) | “ t' P Ju
1 1 o 1 ! 1
C = sigmoid(B) E*F'l :.Il E:*:'l ! 1 é’- : é_._ :1 0 :1
1 ____ﬁ ____ﬁ
E = Pooling(C) Er--——ﬁ, - ----n = =
ooling L GoE*F 1 1 1 1 1 1 1 1

Initial state of

allocation algorithm

step 1: Allocate

tag for B

step 2: Allocate tag
for C, cannot do
inplace because B

step 3: Allocate tag
for F, release space
of B

step 4: Reuse the
tag in the box for E

step 5: Re-use tag of E,
This is an inplace
optimization

is still alive

Final Memory Plan

[internal arrays, same color indicates shared Tag used to indicate memory sharing

7 : :
mermory. . on allocation Algorithm.
count re ¢ounter on dependent operations &

that yet to be fullfilled Box of free tags in allocation

—— data dependency, operation completed algorithm.

----» data dependency, operation not completed

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Concurrency vs Memory Optimization

Cannot Run in Parallel

A Al

A[2] = conv(A[1]) f7oiiiin [1 A[5] = pool(A[1])

A[3]=pool(A[2])

A[4]=conv(A[3])

A[8] = concat(A[4], A[7])

B internal arrays

» Memory allocation for result, same
color indicates shared memory.

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Enables two Parallel Path

A Al1]
]

A[2] = conv(A[1])] [1 A[5] = pool(A[1])

A[3]=pool(A[2]) L A[6]=conv(A[5])

A[4]=conv(A[3]) A[7]=pool(A[6])

A[8] = concat(A[4], A[7])

—~ data dependency

~ implicit dependency introduced due to allocation

Concurrency aware Heuristics

1 1
1
1
1
1 1
1
First the Reset the Reward of The final node Color
Longest Path visited Node to 0. Find

the next longest Path

Restrict memory reuse in the same colored path

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Memory Allocation and Scheduling

Introduces implicit control flow

/ dependencies between ops

A[2] = conv(A[1])] A[5] = pool(A[1])

A[3] = pool(A[2])

A[4] = conv(A[3])

A[8] = concat(A[4], A[7])
Solutions:
e Explicitly add the control flow dependencies
o Needed in TensorFlow
e Enable mutation in the scheduler, no extra job needed
o Both operation “mutate” the same memory
o Supported in MXNet

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Memory Plan with Gradient Calculation

Back to the Question: Why do we need automatic differentiation
that extends the graph instead of backprop in graph?

o S s s |
mul 7 add-const]—*[exp]

b

d d
a_‘_igr‘a mul_1 [mul]gt_gr‘a
) [)

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Memory Plan with Gradient Calculation

Back to the Question: Why do we need automatic differentiation
that extends the graph instead of backprop in graph?

o S s s |
mul 7 add-const]—*[exp]

b

d d
a_‘_igr‘a mul_1 [mul]gt_gr‘a
) [)

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Memory Optimization on a Two Layer MLP

Network Configuration Gradient Calculation Graph A Possible Allocation Plan
input input input-grad input input-grad
inplace r’r;‘err?ory
operation e
; fullc-forward N -
fullc-forward ulic-forwar fullc-backward \ fullc-forward fullc-backward H
X 1
sigmoid-forward sigmoid-forward sigmoid-backward sigmoid-forward sigmoid-backward /
!
!
fullc-forward fulle-forward fullc-backward fulle-forward fullc-backward ,’I

U
softmax-forward softmax-forward

softmax-backward softmax-forward soliresclacionss d'
log-loss label log-loss label
—— data dependency [] Memory allocation for each output of op, same

color indicates shared memory.

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Impact of Memory Optimization in MXNet

8 - | Il naive

inplace

co-share

6 | | MMinplace & co-share

i

| I
0 e |

alexnet googlenet

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

vag

.| Il naive

inplace

co-share

" | M inplace & co-share

B ™

h

alexnet googlenet

We are still Starved

e For training, cost is still linear to the number of layers
e Need to book-keep results for the gradient calculation

Network Configuration Gradient Calculation Graph A Possible Allocation Plan
input input input-grad . g
p put-g inplacg input input-grad 2;3223
operation e
fullc-forward fullc-forward fillebackward \\\\ A T - l:'
sigmeld:forward sigmoid-forward sigmoid-backward sig;:'loid-forward sigmoid-backward /’I
i
fullc-forward fullc-forward fullc-backward R — — ,’/
softmax-forward softmax-forward softmax-backward softmax-forward softmax-backwar d'/
log-loss [} label log-loss label
—— data dependency [] Memory allocation for each output of op, same

color indicates shared memory.

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Trade Computation with Memory

e Only store a few of the intermediate result
e Recompute the value needed during gradient calculation

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

PN N PN
Forward (") @) @

Backward1 O O Q C
Backward?2 O Q @

O Data to be checkpointed for backprop

O
O

)
O

| =

Q Data to be dropped

Computation Graph View of the Algorithm

Network Normal Memory Optimized
Configuration Gradient Graph Gradient Graph
it input input-grad input input-grad

conv-forward conv-backward - cony-forward [] || conv-backward

conv-forward

bn-forward bn-forward bn-backward bn-forward bn-backward
RSl saR relu-forward relu-backward relu-forward relu-backward
conv-forward conv-forward conv-backward conv-forward votiv-backiard
bn-forward Bl O bn-backward bn-forward bn-backward
relu-forward relu-forward relu-backward relu-forward relu-backward
—— data dependency ----* control dependency [1 Memory allocation for each output of op, same

color indicates shared memory.

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Sublinear Memory Complexity

e If we check point every K steps on a N layer network
e The memory cost = O(K) + O(N/K)

_— S

Cost per segment Cost to store results

e We can get sqrt(N) memory cost plan

e With one additional forward pass(25% overhead)

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Alternative View: Recursion

: input |
input input-grad : :
1 1
: bn-backward :
| :
_______ I !
S : relu-backward !
onv-bn-relu I
- - I I
conv-bn-relu backward ' conv-backward !
forward | |
L . |
conv-bn-relu
conv-bn-relu 4 baskoard
forward
—» data dependency [] Memory allocation for each output of op,

same color indicates shared memory.

More memory can be saved by multiple level of recursion

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Comparison of Allocation Algorithm on ResNet

Intermediate feature map memory cost (GB)

N
w
(=2}

-
N
o0

[=2]
e

w
N

-
L))

no optimization _, . -

~ @ drop bn, relu

~ sublinear plan

inplace

256 512
Number of layers

128 1024

(a) Feature map memory cost estimation

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

16

GPU memory cost (GB)
sy

sharing(total)

sharing(feature map cost)

sublinear plan(total)

" sublinear plan(feature map cost)

256 512
Number of layers

128

(b) Runtime total memory cost

1024

Chen et.al 2016

Comparison of Allocation Algorithm on LSTM

__ 512 . : 16
o 256! 2 . sharing(total)
= no optimization st
S 128 — 8
> S
S 64 inplace o <
£ © a4l - sharing(feature map cost) |
g 32 4
e 14 S
a I
£ s 2t]
I &
2 g it
R . £ B
2 sublinear plan & s
]
T b
QEJ 0.5¢ o sublinear plan(feature map cost)]
3 05 :
E 0 25 i " i i " " "
02564128 256 512 1024 2048 ' 64 128 256 512 1024 2048
Number of unrolling steps Number of unrolling steps
(a) Feature map memory cost estimation (b) Runtime total memory cost

PAUL G. ALLEN SCHOQOL Chen et.al 2016

OF COMPUTER SCIENCE & ENGINEERING

Execution Overhead

16 - 32
16
8.

v 1 v

& sublinear;plan 5 8 sublinear plan

4 4

@ @ 4

@ @

Q. a

g | g 2 '\

o (&)

o o ;

E . E 1 sharing

= =

1 sharing 1
0.5
0.5 0.25 3 .
128 256 512 1024 64 128 256 512 1024 2048
Number of layers Number of unrolling steps
(a) ResNet (b) LSTM

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Take-aways

e Computation graph is a useful tool for tracking dependencies
e Memory allocation affects concurrency

e \We can trade computation for memory to get sublinear memory plan

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Assignment 2

e Assignment 1 implements computation graph and autodiff
e Assignment 2 implements the rest of DL system stack (Graph Executor) to

run on hardware

o Shape Inference
o Memory management
o TVM-based operator implementation

e Deadline in two weeks: 5/8/2018
e Post questions to #dIsys slack channel so course staff can help

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

