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Where are we

Gradient Calculation (Differentiation API)

Computational Graph Optimization and Execution

Runtime Parallel Scheduling

GPU Kernels, Optimizing Device Code

Programming API

Accelerators and Hardwares

User API

System 
Components

Architecture

High level Packages
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Recap: Computation Graph
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Recap: Automatic Differentiation 
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Backprop in Graph

Autodiff by Extending the Graph: assignment 1



Questions for this Lecture
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matmult-
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y cross_entropy

Why do we need automatic differentiation that extends the 
graph instead of backprop in graph?



Memory Problem of Deep Nets

LeNet

Inception

Deep nets are becoming deeper



State-of-Art Models can be Resource Bound

● Examples of recent state of art neural nets 
○ Convnet: ResNet-1k on CIFAR-10, ResNet-200 on ImageNet
○ Recurrent models: LSTM on long sequences like speech

● The maximum size of the model we can try is bounded by total RAM 
available of a Titan X card (12G)

We need to be frugal



Q: How to build an Executor for a Given Graph
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3
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Computational Graph for   exp(a * b + 3) 



Build an Executor for a Given Graph

1. Allocate temp memory for intermediate computation 

Same color represent  same 
piece of memory
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Build an Executor for a Given Graph

a

b

mul add-const

3

exp

32 35 exp(32)

Computational Graph for   exp(a * b + 3) 

1. Allocate temp memory for intermediate computation 

2. Traverse and execute the graph by topo order. 
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Build an Executor for a Given Graph
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Computational Graph for   exp(a * b + 3) 

1. Allocate temp memory for intermediate computation 

2. Traverse and execute the graph by topo order. 
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Temporary space linear 
to number of ops 



Dynamic Memory Allocation
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Memory Pool

1. Allocate when needed

2. Recycle when a memory is not needed.

3. Useful for both declarative and imperative executions
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Dynamic Memory Allocation
1. Allocate when needed

2. Recycle when a memory is not needed.

3. Useful for both declarative and imperative executions
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Static Memory Planning
1. Plan for reuse ahead of time 

2. Analog: register allocation algorithm in compiler
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exp
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Same color represent  same 
piece of memory



Common Patterns of Memory Planning 

● Inplace store the result in the input 

● Normal Sharing reuse memory that are no longer needed.



Inplace Optimization

a

b

mul add-const exp

Computational Graph for   exp(a * b + 3) 

3

● Store the result in the input
● Works if we only care about the final result 

● Question: what operation cannot be done inplace ?



Inplace Pitfalls
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mul add-const

exp
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log

We can only do inplace if result op is the only consumer 
of the current value



Normal Memory Sharing
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Recycle memory that is no longer needed.



Memory Planning Algorithm

A

B = sigmoid(A)

C = sigmoid(B)

E = Pooling(C)

F = Pooling(B)

G = E * F
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step 1: Allocate 
tag for B

step 2: Allocate tag 
for C, cannot do 
inplace because B 
is still alive

step 3: Allocate tag 
for F, release space 
of B

step 4: Reuse the 
tag in the box for E

0

step 5: Re-use tag of E,
This is an inplace 
optimization

internal arrays, same color indicates shared 
memory.

data dependency, operation completed

Initial state of 
allocation algorithm

Final Memory Plan
Tag used to indicate memory sharing 
on allocation Algorithm.

count ref counter on dependent operations 
that yet to be full-filled

data dependency, operation not completed

Box of free tags in allocation 
algorithm. 



Concurrency vs Memory Optimization

A[1]

A[2] = conv(A[1])

A[3]=pool(A[2])

A[4]=conv(A[3])

A[5] = pool(A[1])

A[6]=conv(A[5])

A[7]=pool(A[6])

A[8] = concat(A[4], A[7])

A[1]

A[2] = conv(A[1])

A[3]=pool(A[2])

A[4]=conv(A[3])

A[5] = pool(A[1])

A[6]=conv(A[5])

A[7]=pool(A[6])

A[8] = concat(A[4], A[7])

internal arrays data dependency

Memory allocation for result, same 
color indicates shared memory.

implicit dependency introduced due to allocation

Cannot Run in Parallel Enables two Parallel Path



Concurrency aware Heuristics
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Restrict memory reuse in the same colored path



Memory Allocation and Scheduling

Introduces implicit control flow 
dependencies between ops

Solutions:
● Explicitly add the control flow dependencies

○ Needed in TensorFlow
● Enable mutation in the scheduler, no extra job needed

○ Both operation “mutate” the same memory
○ Supported in MXNet

A[1]

A[2] = conv(A[1])

A[3] = pool(A[2])

A[4] = conv(A[3])

A[5] = pool(A[1])

A[6] = conv(A[5])

A[7] = pool(A[6])

A[8] = concat(A[4], A[7])



Memory Plan with Gradient Calculation
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mul add-const

3

exp

mul
out_grad

mul
a_grad

Back to the Question:  Why do we need automatic differentiation 
that extends the graph instead of backprop in graph?
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Back to the Question:  Why do we need automatic differentiation 
that extends the graph instead of backprop in graph?



Memory Optimization on a Two Layer MLP



Impact of Memory Optimization in MXNet



We are still Starved

● For training, cost is still linear to the number of layers
● Need to book-keep results for the gradient calculation



Trade Computation with Memory

Forward

Backward1

Backward2

Data to be checkpointed for backprop

Data to be dropped

● Only store a few of the intermediate result
● Recompute the value needed during gradient calculation



Computation Graph View of the Algorithm



Sublinear Memory Complexity
● If we check point every K steps on a N layer network

● The memory cost =  O(K) + O(N/K)

● We can get sqrt(N) memory cost plan

● With one additional forward pass(25% overhead)

Cost per segment Cost to store results



Alternative View: Recursion

More memory can be saved by multiple level of recursion



Comparison of Allocation Algorithm on ResNet

Chen et.al 2016



Comparison of Allocation Algorithm on LSTM

Chen et.al 2016



Execution Overhead



Take-aways

● Computation graph is a useful tool for tracking dependencies

● Memory allocation affects concurrency

● We can trade computation for memory to get sublinear memory plan



Assignment 2

● Assignment 1 implements computation graph and autodiff
● Assignment 2 implements the rest of DL system stack (Graph Executor) to 

run on hardware
○ Shape Inference
○ Memory management
○ TVM-based operator implementation

● Deadline in two weeks: 5/8/2018 
● Post questions to #dlsys slack channel so course staff can help


